DO8-105-I

LOGISTICS STRATEGIES AND PRACTICES IN VENEZUELA

Ángel Díaz Matalobos

Instituto de Empresa

Dept. Operations & Technology Management C/ María de Molina, 12, 5° 28006, Madrid - Spain angel.diaz@ie.edu Cándido Pérez Costela

Instituto de Estudios Superiores de Administración (I.E.S.A) Av. IESA. San Bernardino Caracas 1010 Venezuela candido.perez@iesa.edu.ve

Abstract

This paper presents an empirical and statistical analysis identifies the key characteristics and opportunities of logistics in Venezuela. Among the key findings are conservative approaches to logistics in a protected market whose environment is changing faster than preferred by the responsible actors, limiting the application of modern logistics practices. This and other considerations, such as geographical location, production of commodities and the identification in the strategy of the firms of the need for better logistics practices indicate important opportunities for the application of modern logistics practices.

Keywords

Logistics in Venezuela, conservative approaches, modern logistics practices

DO8-105-I

Introduction

Logistics management has become a strategic tool in the success of business plans, due to its impact on cash flow generation and service quality. The processes of transformation and delivery demand a strategic vision of the links among manufacturing, purchasing and marketing, including organizational and environmental considerations.

Venezuela, with a promising geographical location, but with operational inefficiencies (e.g., high inventory costs –Esqueda, Díaz and Sánchez, 1996) and other market and state inefficiencies is particularly sensitive to advances in logistics. This situation is examined in this paper.

Logistics in Venezuela

Venezuela, an important emerging market (Bowman, 1998) constitutes a test bed for advanced logistic practices, due to extensive commodities production, its geographical location and a relatively low level of logistics performance.

Commodities produced in the country include petroleum and derivatives, natural gas, steel, aluminum and electricity. These are lead by Petróleos de Venezuela (PDVSA) –an state owned firm responsible for the petroleum and natural gas exploration, production and delivery- which is developing outsourcing as a focus strategy, ceding non-core activities to specialized firms.

The geographical location of Venezuela –near the continent's center of gravity, Figure 1- constitutes a comparative advantage, as the country could become a commerce hub between the north and south of the Americas. This could be facilitated by strong improvements in the efficiency of the main port of the country, Puerto Cabello (Diaz and Dresner, 1997; Gooley, 1998), and by the consolidation of the road to Manaos, Brazil (Acosta and Canakis, 1996). Other regional hubs are under development. Such are the cases of Panama, where a Pacific-Atlantic rail link will move 500,000 TEU by 2003 (Wilner, 2000) and Mexico where a similar link is also being built (Logistic Management and Distribution Report, 2001).

Figure 1. Logistic potential of Venezuela

These comparative advantages are marred by the backward state of competitiveness in the country. Venezuela has been ranked next-to-last in the world competitiveness report (IMD, 2000) for the last seven years, and this could be partially related to very small production scales and inefficient distribution channels (Esqueda et. al., 1996).

Logistics techniques and practices such as cross-docking, outsourcing in transportation and warehousing, process orientation (driven by ERP implementations), and considerable investments in information technology could help to improve this situation, even when other advanced practices like

benchmarking, network design and cooperative schemes are still lacking. This profile is similar to the one described for Latin America as a whole by Zinn (1996).

With this motivation a survey of key logistics players in Venezuela was conducted, resulting in a map of current practices, strategies and logistics opportunities

The Logistic Survey

The instrument was designed in mid-1998 as part of an academic collaboration between a consulting firm (AT Kearney) and a business school (IESA). This was the first logistic poll documented in Venezuela.

The respondents fulfilled Likert-type scales and numerical questions. The questions were designed to obtain descriptive information on logistic practices, while avoiding the disclosure of sensible financial information.

The sample and profile of the firms

A total of 384 logistics providers and users were initially contacted, with 31 responses received by February 1999. The low proportion of responses (8 per cent) is about average for Venezuela, where many companies do not have formal information services, or are suspicious of disclosing information.

Respondents are representative of the industrial and service sectors, employ 820 persons in average with annual sales close to US \$ 35 million, and exports of about 15 % of total sales. They tend to have large organizational structures for their sizes, averaging six hierarchical levels.

This article continues the exploratory study previously performed by Díaz and Pérez (2000). The raw data obtained was processed with standard statistical methods (including correlation and factor analysis), to study the relationship patterns among the variables in the survey¹.

Logistics Strategy

Among key results it was found that logistics strategy is mainly concerned with the integration of the supply chain: Long-term relationships with customers and suppliers, on-site services and delivery dependability, as shown in Figure 1. This is in line with the Mega-trends reported by Bowersox, Closs and Stank (2000).

Figure 1. Key strategic considerations in Venezuelan' logistics

¹ Details of the survey in Díaz and Pérez (2000)

DO8-105-I

Response speed was described as more valuable than transportation costs, suggesting that efficacy is preferred to efficiency, a usual trend in protected markets.

The development of proprietary distribution channels is thought of as safer than outsourcing -implying the absence of reliable third-party providers.

The main perceived threats to logistics in Venezuela are economic uncertainty (due to short-term economic policies), infrastructure limitations and human resources scarcity.

Suppliers' selection policies reveal the behavior of Venezuelan managers: quality, price and dependability were reported as the key influential characteristics. This looks again as a consequence of the use of hierarchies –instead of markets- and conglomerates (subcontracting with firms owned by the same economic group).

Key factors in the logistic strategy

The respondents' opinions about key elements in logistics were processed using factor analysis. Table 1 shows the association among low transportation costs (COSTS), reliable providers network (NET) and ownership of the distribution channel: outsourcing is viewed as positive (3PCHANN) and total ownership as negative (OWNCHANN). This factor could be named "Costs view".

Another interesting relationship showed is among after sales services (AFTSALES), reliable network suppliers and long-term relationship with clients (CLIENTS). This shows long-term downstream commitments.

Rotated Component Matrix ^a							
	Component						
	1	2	3				
3PCHANN	.876						
OWNCHANN	853						
COSTS	.569		.448				
DELIVERY			.933				
AFTSALES		.727	.538				
NET	.500	.400					
CLIENTS		.900					

Extraction Method: Principal Component Analysis.

a. Rotation Method: Varimax with Kaiser normalization (converged in 4 iterations)

Table 1. Factor Analysis results for key elements in logistics (Rotated Component Matrix)

The association among low transportation costs, short lead-times (DELIVERY) and after sales services suggest a commitment to customer satisfaction. Most of the variance is collected by the three factors described above, as shown in appendix 2 (table A1, explained variance of key logistic strategy factors).

A clearly marked relationship between long-term relationship with clients and after sales service was expected. This is empirically proved in Table 2 where results of a linear regression became significant at standard confidence levels.

Coefficients									
Model		Unstar Coet B	ndardized fficients Std. Error	Standardized Coefficients Beta	t	. Sig			
1	(Constant) AFTSALES	2.937 .253	.342 .098	.445	8.585 2.580	.000 .016			
2 -									

a. Dependent Variable: CLIENTS

Table 2. Linear Regression between CLIENTS and AFTSALES

DO8-105-I

Threats to logistics development in Venezuela

Conducting a similar analysis, the perceptions of actual and future threats to the development of logistic practices in Venezuela were obtained. The resulting factors can be described as external and internal.

Figure 2. Threats to the development of logistics in Venezuela

Factor analysis results are included in Table 3. The respondents related the lack of transport infrastructure (INFRAEST), foreign competition (COMPETIT), and difficulties identifying foreign markets to export (UNKNOWN). This factor was called external environment, as firms have little control on it.

The other relevant factor includes macro-economic uncertainty (ENVIRON), lack of adequate custom services (SERVICE), and absence of qualified personnel (PERSON). This factor was called internal, or national, environment.

Rotated Component Matrix ^a							
	Component						
	1 2						
ENVIRON	.819	258					
COMPETIT	274	.691					
INFRAST	.249	.682					
SERVICE	.722	.271					
UNKNOWN	.478	.598					
PERSON	.630						

Extraction Method: Principal Component Analysis Rotation Method: Varimax with Kaiser Normalization a. Rotation converged in 3 iterations

Table 3 Factor Analysis for threats to logistics development

The total explained variance, showed in appendix 2 (Table A2) is approximately 57% suggesting some limitations in the explanatory power of the factor analysis. Successive tests were done but each new factor only contains one variable.

DO8-105-I

The relations obtained in internal environment suggested additional studies, as the variable qualified personnel does not contain an identifiable pattern. This lead to calculate the correlation between those variables, presented in Table 6.

		Correlations		
		ENVIRON	SERVICE	PERSON
Pearson	ENVIRON	1.000	.379 *	.452 *
Correlation	SERVICE	.379*	1.000	.094
	PERSON	.452*	.094	1.000

(*) Correlation is significant at the 0:05 level (2-tailed).

Table 4. Correlation between variables (internal environment factors)

There appears to be a significant correlation between ENVIRON and each of the other two variables, but no relation between SERVICE and PERSON. It looks like a case of structural dependency linking the latter pair with macro-economic uncertainty. Structural equation models could help to confirm this hypothesis.

Criteria to select suppliers

The most important criteria to select suppliers -from the highest to the lowest degree of importance- are: quality, delivery reliability, price, response flexibility, and geographic location, Figure 3.

Figure 3. Importance of criteria to select suppliers

Due to the slight differences among the first three a correlation study was conducted (Table 5). The high values of correlation and significance explain the absence of dominant criteria, which explains the difficulties suffered by Venezuelan firms trying to establish strategic ventures for long-term supply chain partnerships.

Correlations											
	FIRSTORI SECONORI THIRDORI FOURTORI FIFTHORI										
Pearson	FIRSTCRI	1.000	.822 **	.645**	.339	.484					
Correlation	SECONCRI	.822 **	1.000	.819**	.748 *	.873					
	THIRDCRI	.645 **	.819 **	1.000	.742 *	.981 *'					
	FOURTCRI	.339	.748 *	.742*	1.000	.981 **					
	FIFTHCRI	.484	.873	.981**	.981 **	1.000					

(**) Correlation is significant at the 0.01 level (2-tailed), and (*) at the 0.05 level (2-tailed).

Table 5. Correlation among criteria for choosing suppliers

DO8-105-I

Determination of customers' logistics needs

Method used to understand customers' needs were ranked. The four main methods are classic marketing tools: market research, customer surveys, analysis of services provided by competitors and focus groups with clients.

Figure 4. Methods used to determine customers' logistics needs

Again, Venezuelan companies do not perceive long-term commitment as an important strategy. Table 6 shows strong correlation among the first three techniques.

Correlations									
NEED1 NEED2 NEED3 NEED4									
Pearson	NEED1	1.000	.770 **	.434 *	.311				
Correlation	NEED2	.770 **	1.000	.483	.311				
	NEED3	.434	.483 *	1.000	.311				
	NEED4	.311	.311	.311	1.000				

(**) Correlation significant at the 0.01 level (2-tailed) and (*) at the 0.05 level (2-tailed).

Table 6. Correlation among logistic requirements

Logistic Practices And Techniques

Respondents' firms value more integration with suppliers and customers (coincident with the confessed strategy), performance evaluation and benchmarking than more recent practices like ECR. But the use of these practices is in contradiction with the perceived importance (Figure 5), and so a correlation test was performed as presented in Table 9.

DO8-105-I

Figure 5. Perceived importance and utilization of key logistics practices and techniques

These results show the low perceived importance –prefixed IMP– of recent practices like ECR and their relation with their usage –prefixed USE.

Attention is caught by the importance assigned to integration along the supply chain (IMPSUPPL and IMPCLIEN) compared to its actual application –specially with suppliers-, and the relationship among performance (PERFO), outsourcing (OUTSO) and integration with customers (CLIEN). Logistics integration is desired, rather than implemented, according to these results.

	Correlations								
		IMPSUPPL	IMPCLIEN	IMPECR	IMPCROSS	IMPOUTSO	IMPERFO	IMPBENCH	
Pearson	IMPSUPPL	1.000	.481**	256	409	338	021	080	
Correlation	IMPCLIEN	.481 **	1.000	.163	283	404 *	.438 *	.133	
	IMPECR	256	.163	1.000	.349	.073	.423 *	.191	
	IMPCROSS	409	283	.349	1.000	.067	.030	.189	
	IMPOUTSO	338	404*	.073	.067	1.000	236	064	
	IMPPERFO	021	.438*	.423 *	.030	236	1.000	.479 **	
	IMPBENCH	080	.133	.191	.189	064	.479 **	1.000	
	USESUPPL	.306	.184	095	291	252	.216	.270	
	USECLIEN	.272	.595**	237	061	116	.392 *	.103	
	USEECR	087	082	.247	094	031	.169	334	
	U SECRO SS	.047	.162	.296	.575	285	.169	.267	
	USEOUTSO	229	195	186	.000	.485 **	017	.071	
	USEEVALU	117	125	.000	262	202	.632 **	002	
	USEBENCH	171	175						

(**) Correlation is significant at the 0.01 level (2-tailed) and (*) at the 0.05 level (2-tailed)

Table 7. Correlation among logistic elements

A factor analysis was performed to further study existing relations. Table 8 shows results for factors and Table a3 (appendix 2) the total variance explained.

		-					
	Component						
	1	2	3	4	5		
IMPSUPPLI	451	342	456	.628	.212		
IMPCLIEN		519	273	.594	.481		
IMPECR	.926						
IMPCROSS	.674			355	.585		
IMPOUTSO			.287	913			
IMPPERFO	.347	.899					
IMPBENCH	.884	.253					
USESUPPL		.505	760	.274			
USECLIEN	285		436		.755		
USEECR			.937				
USECROSS	.285	.299		.208	.863		
USEOUTSO	324	.315	.716	513			
USEPERFO	255	.939					
USEBENCH				.568	215		

Rotated Component Matrix ^a

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization. a. Rotation converged in 16 iterations.

Table 8. Factor Analysis of logistic practices and techniques

The firms link outsourcing with more recent techniques (ECR, cross-docking), from the point of view of importance. This implies a particular cultural perception: outsourcing is a novelty in an environment that favors vertical integration.

DO8-105-I

Performance is linked with evaluations (EVALU), indicating an adequate correspondence between firm's policies and practices. ECR is related directly to outsourcing, but in the opposite direction to the usage of integration with suppliers. This constitutes a logistic opportunity.

The use of benchmarking appears related to the variables just mentioned, as a tendency to perform better than competitors.

Cross-docking is linked to integration in the direction of the supplier, reflecting exigencies from the latter, more than initiatives from the supplier.

The importance of developing a network with suppliers and customers contrasts with the (opposite) relation assigned to outsourcing. The perception of the outsourcer as an intruder to the network is significant and suggests cultural misalignments. This topic is further explored in the next section. Outsourcing

Only outsourcing of transportation is both perceived as important and widely used (Figure 6). Other activities show important gaps between perceived importance and use, denoting the implicit conflict between control and efficiency.

Figure 6. Perceived importance and utilization of outsourcing

The ranked reasons to outsource were focus on core competencies, improvement in service quality, better use of resources and cost reduction. The relative perception of reasons to outsource points out to a tight relation between cost reduction and efficient use of resources, besides the association with service quality improvement. This suggests an implicit direct relation between quality and cost, which may be caused by cultural factors. Table 9, a correlation study, shows the relation among these variables

Correlations								
		REACORE	REAQUAL	REARESOU	REACOST			
Pearson	REACORE	1.000	.544*	.667**	.210			
Correlation	REAQUAL	.544*	1.000	.584**	.347			
	REARESOU	.667**	.584**	1.000	.422*			
	REACOST	.210	.347	.422*	1.000			

Correlation is significant at the 0.01 level (2-tailed) and (*) at the 0.05 level (2-tailed).

Table 9. Correlation among reasons to outsource

Therefore the quality of the provided service and efficiency are perceived as the firms' core objectives, and not cost reduction. This view could be caused by the relatively small size of the market in Venezuela.

When asked to report why not to outsource, the responses show a particular pattern: every variable analyzed (non-available services, costlier, confidentiality, and control and legal restrictions) becomes

WP 11 / 02

independent. This is shown as a correlation analysis in Table 10, which shows quite differentiated perceptions about each one of the surveyed variables.

	Correlations							
		NOUTCONT	NOUTUNAV	NOUTCOST	NOUTPROT	NOUTLEGA		
Pearson	NOUTCON	Г 1.000	283	105				
Correlation	NOUTUNA	/283	1.000	.161	.121	311		
	NOUTCOST	Г105	.161	1.000	.097	.093		
	NOUTPROT	Г.108	.121	.097	1.000	.023		
	NOUTLEGA	.217	311	.093	.023	1.000		

Table 10. Correlation among reasons to avoid outsourcing

Information Technology

To study relations between technology availability (AVA prefix) and its use- (USE prefix) seven types of technological resources were proposed to the surveyed managers: integrated systems, bar coding, tracking facilities, GIS, GPS, EDI, and Internet/Web (same order of appearance in the respective table). The reported usage was concentrated in integrated systems and bar coding technology. More than 60% of the respondents reported the other resources as unknown or not used in their firm (shown in the right axis of Figure 7 as % of companies reporting availability of IT).

Figure 7. Availability and use of logistics-related IT

Table 11 introduces the results of a correlation study among these variables.

		AVAERP	AVABAR	AVATRACK	AVAGIS	AVAGPS	AVAEDI	AVAWEB
Pearson	AVAERP	1.000	.827**	.510	.510	.498*	.681*	.302
Correlation	AVABAR	.827**	1.000	.177	229	234	.735*	081
	AVATRACK	.510	.177	1.000	1.000**	.575*	.586*	.664*
	AVAGIS	.510	229	1.000**	1.000	.866**	.559	.704*
	AVAGPS	.498*	234	.575 *	.866**	1.000	.501	.592*
	AVAEDI	.681*	.735*	.586 *	.559	.501	1.000	.630*
	AVAWEB	.302	081	.664 *	.704*	.592*	.630*	1.000
	USEERP						.000	-1.000**
	USEBAR	a	. a	701	.091	.000	686	686
	USETRACK	.500	756	-1.000**	1.000**	. a	. a	866
	USEGIS	1.000**	.962*	. ^a	a	. a	a	.500
	USEGPS	a	_ a	. a	a	_ a	a	a
	USEEDI	.866	_ a	. a	. a	.000	. a	. а
	USEWEB	560	a	.000	079	065	a	a

		USEERP	USEBAR	USETRACK	USEGIS	USEGPS	USEEDI	USEWEB
Pearson	AVAERP	a	. a	.500	1.000**	. a	.866	560
Correlation	AVABAR	.302	_ a	756	.962*	a	. a	a
	AVATRACK	.500	701	-1.000**	. а	a	. a	.000
	AVAGIS	. a	.091	1.000**	. a	. a	. a	079
	AVAGPS	. a	.000	.a	. а	. a	.000	065
	AVAEDI	.000	686	_ a	. a	_ a	_ a	. a
	AVAWEB	-1.000**	686	866	.500	. а	. a	.a
	USEERP	1.000	.206	.213	.041	.218	.000	.162
	USEBAR	.206	1.000	069	.427	.486	.448	.297
	USETRACK	.213	069	1.000	379	.925 **	.539	.261
	USEGIS	.041	.427	379	1.000	.088	.340	.637
	USEGPS	.218	.486	.925**	.088	1.000	.899**	.971**
	USEEDI	.000	.448	.539	.340	.899 **	1.000	.102
	USEWEB	162	297	261	637	971 **	102	1 000

(**) Correlation is significant at the 0.01 level (2-tailed) and (*) at the 0.05 level (2-tailed)

(a) Cannot be computed because at least one of the variables is constant.

Table 11. Correlation among availability and use of technology

From both tables, integrated systems are perceived as in tight relation with bar coding, EDI and satellite positioning, but only linked to geographical databases. It could be a bias caused by the selling strategies of such equipment providers.

Tracking is associated with geographical databases, in contrast with the opposite relationship assigned to shared applications with suppliers and customers. This points out power conflicts derived from information control. In Venezuela, it is common to relate power to information access.

It is important to mention the quite perfectly opposite relationship between tracking availability and usage, as a different behavior than the observed with geographical databases where the relation is direct.

The use of Internet is perceived as associated to all the recent tendencies (tracking, GIS, GPS, EDI, etc.) with opposite relation to the use of integrated systems. It looks like Internet is viewed as the way to avoid direct integration efforts.

Satellite technology is linked to EDI, Internet and tracking. This coincides with the systems operated by some foreign package carriers.

A total of eight explanatory variables for the adoption of IT were considered: precision, information comprehension, speed, accessibility along the supply chain, facilities to develop internal communications, professional appearance, transparency, and attraction and retention effect (in this order of appearance in the correlation table). The main reasons argued by the firms to use information technology are speed and precision, correlated, as is speed and internal communications (results of the study of correlation are showed in Table 12).

	Con elations									
		PRECIS	COMPREH	SPEED	ACCESS	INTCOMM	APPEAR	TRANSPAR	RETENT	
Pearson Correlation	PRECIS	1.000	.318	.432*	.073	.225	.282	035	300	
	COMPREH	.318	1.000	.360	.106	.426*	.228	012	065	
	SPEED	.432*	.360	1.000	054	.402*	069	.291	.020	
	ACCESS	.073	. 106	054	1.000	.313	.375	.357	.442*	
	INTCOMM	.225	.426*	.402*	.313	1.000	.105	.285	.316	
	APPEAR	.282	.228	069	.375	.105	1.000	.277	.236	
	TRANSPAR	035	012	.291	.357	.285	.277	1.000	.495*	
	RETENT	300	065	.020	.442*	.316	.236	.495*	1.000	

Corrolations

(*) Correlation is significant at the 0.05 level (2-tailed).

Table 12. Relations among reasons for using IT in logistics

DO8-105-I

Transparency and accessibility are related to the market (attraction and retention effect), while the comprehension of information is linked to internal communications. This points out to providing information to internal clients but only data to external ones.

Future tendencies in IT use

When asked to identify which technologies are more likely to impact logistics, respondents ranked first product tracking, advanced planning capabilities (APS-type) and automated/intelligent infrastructure. This indicates links between flexible/dynamic resource planning and flexibility to respond to product innovations, indicating a tendency to improve the information available to the client.

Reported Performance In Logistic Activities

Although logistic performance is comparable to the reported by the Council of Logistics Management (CLM), in terms of lead-time, order filling and precision, there are important gaps between the customer's needs and suppliers' performance.

Anyway, in all the reported cases, the performance required (and obtained) by the customer is better than that required and obtained by the suppliers.

This shows an important opportunity for a third party to manage the whole supply chain.

Average performance is shown in Table 17.

Table 17. Reported performance for performance in logistic activities

DO8-105-I

Concluding Remarks

Logistic practices adopted in Venezuela follow conservative strategies. The market characteristics – small size, lack of service providers- conspire against the development of outsourcing practices. This, in one hand, and the negative perception of outsourcing, on the other, creates opportunities for third party logistics activities focused on delivering appropriate services with cost efficiency in strategic alliances. As predicted by the analysis these activities have slowly developed in Venezuela since the survey took place.

Information technology tools have been slow to adapt by leading companies that disregard recent trends and favor the use of mature technologies has been chosen as the safest strategy, even when there are important gaps between the customers' needs and the services delivered by the suppliers.

The transactional focus of the relevant actors limits the long-term vision of the business, favoring vertical integration and excluding any possible loss of power that could result from the use of best practices in logistics.

Integration of the supply chain is the key pending issue in order to develop the logistic potential of Venezuela. Although some qualifiers are present (geographic positioning and human resources availability), the lack of infrastructure and technology slows down the implementation of logistic practices focused on improving the services delivered by means of cost reduction and quality improvement.

DO8-105-I

Appendix 1

The following table (A.1) presents the definitions of the reported variables, alphabetically ordered.

NAME	DEFINITION
3PCHANN	Degree of importance assigned to the outsourcing of distribution channels as a
	success factor
ACCESS	Reason perceived to use information technology: Information accessible by
	consumers and suppliers
AFTSALES	Degree of importance assigned to after sales service as a success factor in developing
	logistics
APPEAR	Reason perceived to use information technology in the firm: Professional appearance
AVABAR	Degree of technology availability in the firm: Bar Coding
AVAEDI	Degree of technology availability in the firm: Electronic Data Interchange(EDI)
AVAERP	Degree of technology availability in the firm: Integrated systems (ERP)
AVAGIS	Degree of technology availability in the firm: Geographic Databases (GIS)
AVAGPS	Degree of technology availability in the firm: Satellite Positioning Systems (GPS)
AVATRAC	Degree of technology availability in the firm: Electronic Tracking
Κ	
AVAWEB	Degree of technology availability in the firm: E-Commerce via WEB
CLIENTS	Importance of long-term relationship with clients as a key factor in logistics
	development
COMPETI	Perceived importance of foreigner competition impact as a threat to logistics
Т	development
COMPREH	Reason perceived to use information technology in the firm: Information's degree of
	comprehension
COSTS	Importance perceived of low transportation costs to measure success in developing
	logistics
DELIVER	Degree of importance assigned to lead-time as a success factor in developing
	logistics
ENVIRON	Uncertainty about economic environment as a threat to logistic activities'
	development
FIFTHCRI	Fifth criterion to select providers and be selected as provider: geographic location
FIRSTCRI	Most important criterion to select providers and be selected as provider: quality
FOURTCRI	Fourth criterion to select providers and be selected as provider: response flexibility
IMPADM	Degree of importance assigned to the outsourcing of logistic-related administrative
	tasks
IMPBENC	Degree of importance assigned to benchmarking as a successful logistics practice
H	
IMPCLIEN	Degree of importance assigned to integration with clients as a good practice
IMPCROSS	Degree of importance assigned to Cross-Docking
IMPDISTR	Degree of importance assigned to the outsourcing of distribution activity
IMPECR	Degree of importance perceived of Efficient Consumer Response (ECR) as a
	successful practice
IMPINFSY	Degree of importance assigned to the outsourcing of information systems
NAME	DEFINITION
IMPINLOG	Degree of importance assigned to the outsourcing of internal logistics activities
IMPOUTS	Importance assigned to outsourcing as a successful logistics practice

IE Working	Paper DO8-105-I 4/02/2002						
0							
IMPPERFO	Importance assigned to formal performance evaluation as a good business practic logistics	e in					
IMPSUPPL	Degree of importance assigned to integration with suppliers as a successful practic	e					
IMPTRAN S	Degree of importance assigned to transportation activity in the firm						
IMPWARE	Degree of importance assigned to the outsourcing of warehousing activity						
	Importance assigned to the last of adaquate transport infrastructure as a three	t to					
ΙΝΓΚΑδΙ	logistics	1 10					
INTCOMM	Reason perceived to use information technology in the firm: Internal communicati	on					
NEEDS1	Leading practice used to identify clients' logistics requirements: market research						
NEEDS2	Second practice to identify clients' logistics requirements: surveys to clients						
NEEDS3	Third practice to identify clients' logistics requirements: analysis of server provided by competitors	ices					
NEEDS4	Fourth practice to identify clients' logistics requirements: focus groups with client	S					
NET	Importance of a reliable supplier's network to measure success in develop logistics	oing					
NOUTCON T	Reason argued to avoid outsourcing of logistics activities: Loss of control (power)	1					
NOUTCOS T	Reason argued for not outsourcing: Outsourcing is more costly than doing internal	ly					
NOUTLEG	Reason argued to avoid outsourcing of logistics activities: Legal obligations/la	abor					
А	relations						
NOUTPRO T	Reason argued to avoid outsourcing of logistics activities: Protection reliability/intellectual property	of					
NOUTUNA V	Reason argued to avoid outsourcing: Service/Capacity is unavailable in the market	t					
OWNCHA NN	Degree of importance assigned to directly-owning distribution channels as a succ factor	cess					
PERSON	Lack of qualified personnel as a threat to logistic activities' development						
PRECIS	Reason perceived to use information technology in the firm: Information's degree precision	e of					
REACORE	Reason argued to outsource logistics activities: Focus on core activities						
REACOST	Reason argued to outsource logistics activities: Cost-Reduction						
REAQUAL	Reason argued to outsource logistics activities: Improvement of service quality						
REARESO U	Reason argued to outsource logistics activities: Better resource's usage						
RETENT	Reason perceived to use information technology in the firm: Attract and re clients	tain					
SECONCRI	Second criterion to select providers and be selected as provider: delivery reliability	y					
SERVICE	Perceived impact from lack of efficient custom services as a threat to logis development	stics					
SPEED	Reason perceived to use information technology in the firm. Speed						
THIRDCRI	Third criterion to select providers and be selected as provider: price						
TRANSPA	Reason perceived to use information technology in the firm: Transparency to clip	ente					
R	and suppliers	U1113					
UNKNOW	Importance assigned to absence of knowledge about exportation markets a	IS A					
	importance applicate accence of knowledge about expertation markets a	,s u					

IE Working	Paper DO8-105-I	4/02/2002
N	logistics threat	
USEADM	Utilization of outsourcing in billing and collect	
USEAPLIC	Degree of usage in your firm: Shared-applications with suppliers and clients	
USEBAR	Degree of usage in your firm: Bar coding	
USEBENC	Practice's degree of usage: Benchmarking	
Н		
USECLIEN	Practice's degree of usage: integration with clients	
USECROS	Practice's degree of usage: Cross-Docking (CD)	
S		
USEDISTR	Utilization of outsourcing in external distribution	
USEECR	Practice's degree of usage: Efficient Consumer Response (ECR)	
USEEDI	Degree of usage in your firm: Electronic Data Interchange(EDI)	
USEERP	Degree of usage in your firm: Integrated systems (ERP)	
USEEVAL	Practice's degree of usage: Formal performance evaluation	
U		
USEGIS	Degree of usage in your firm: Geographic databases (GIS)	
USEGPS	Degree of usage in your firm: Satellite Positioning Systems (GPS)	
USEINFSY	Utilization of outsourcing in information systems support	
USEINLO	Utilization of outsourcing in internal distribution	
G		
USEOUTS	Practice's degree of usage: Outsourcing	
0		
USESUPPL	Practice's degree of usage: integration with suppliers	
USETRAC	Degree of usage in your firm: Electronic tracking	
K		
USETRAN	Utilization of outsourcing in transportation	
S		
USEWARE	Utilization of outsourcing in warehousing	
H		
USEWEB	Degree of usage in your firm: E-commerce via WEB	

Table A.1 Definitions of the reported variables

DO8-105-I

Appendix 2. Variance analysis

Total	Variance	Explained
TOtal	variance	LAPianieu

	Initial Figenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
		% of	Cumulative		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	2.103	30.044	30.044	2.103	30.044	30.044	2.086	29.803	29.803
2	1.782	25.459	55.503	1.782	25.459	55.503	1.542	22.022	51.825
3	1.122	16.029	71.532	1.122	16.029	71.532	1.380	19.707	71.532
4	.949	13.560	85.092						
5	.570	8.143	93.235						
6	.268	3.833	97.067						
7	.205	2.933	100.000						

Extraction Method: Principal Component Analysis.

Table a1. Total explained variance for key elements in the logistic strategy

	Initial Eigenvalues			Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings		
		% of	Cumulative		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	2.121	35.358	35.358	2.121	35.358	35.358	1.954	32.575	32.575
2	1.290	21.505	56.863	1.290	21.505	56.863	1.457	24.288	56.863
3	.917	15.277	72.140						
4	.799	13.312	85.453						
5	.690	11.505	96.958						
6	183	3 042	100 000						

Total Variance Explained

Extraction Method: Principal Component Analysis.

Table a2. Total explained variance for threats to logistics development

Total Variance Explained

	Initial Eigenvalues		Extraction Sums of Squared Loadings			Rotation Sums of Squared Loadings			
		% of	Cumulative		% of	Cumulative		% of	Cumulative
Component	Total	Variance	%	Total	Variance	%	Total	Variance	%
1	4.256	30.396	30.396	4.256	30.396	30.396	2.822	20.156	20.156
2	3.257	23.266	53.663	3.257	23.266	53.663	2.645	18.892	39.048
3	2.096	14.971	68.634	2.096	14.971	68.634	2.640	18.857	57.905
4	1.762	12.584	81.218	1.762	12.584	81.218	2.503	17.878	75.784
5	1.265	9.032	90.250	1.265	9.032	90.250	2.025	14.467	90.250
6	.996	7.112	97.362						
7	.369	2.638	100.000						
8	2.856E-16	2.040E-15	100.000						
9	2.203E-16	1.574E-15	100.000						
10	1.668E-16	1.191E-15	100.000						
11	-6.46E-17	-4.61E-16	100.000						
12	-1.05E-16	-7.51E-16	100.000						
13	-2.57E-16	-1.84E-15	100.000						
14	-5.08E-16	-3.63E-15	100.000						

Extraction Method: Principal Component Analysis.

Table a3. Total explained variance for logistic practices and techniques

DO8-105-I

References

Acosta, R. and Cabanas, L. 1996. Logística comercial en el eje Manaos-Ciudad Guayana: ¿Cómo ser competitivos a las puertas del Mercado Común del Sur. Master thesis IESA, 1996.

Anonymous. 2001. <u>Mexican company offers new Asia-Europe route</u>. Logistics Management and Distribution Report, Feb.

Bowersox, D., Closs, D. and Stank, T. 2000. <u>Ten Mega-Trends that will revolutionize supply chain logistics</u>. Journal of Business Logistics, v21 N2.

Bowman, R. 1998. The Latin American trades. World Trade; Irvine; Mar.

Díaz, A. and C. Pérez. 2000. Logistic Practices in Venezuela: An Exploratory Study. BALAS Proceedings.

Díaz, A., C. Pérez, and B. Sánchez. 1998. Características Logísticas de Venezuela. IESA working paper.

Díaz, A. and Dresner, M. 1997. The Modernization of Ports in Latin America: A Case Study of Puerto

Cabello. IESA Working paper.

Esqueda, P., A. Díaz and B. Sánchez. 1996. <u>The suppliers effect on the petroleum industry in Venezuela</u>. IESA working paper.

Gooley, T. 1998. <u>Site selection in Latin America: Things are looking up</u>. Logistics Management and Distribution Report. Institute for Management Development -IMD- (2000). The World Competitiveness Yearbook. Switzerland.

Wilner, F. 2000. Ocean-to-ocean by rail. Traffic World, March.

Zinn, W. 1996. <u>The New Logistics in Latin America: An Overview of Current Status and Opportunities</u>. The International Journal of Logistics Management 7.