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Abstract

In this study we compare the Longstaff and Schwartz (1992) (LS) two-factor general equi-

librium model with the Schaefer and Schwartz (1984) (SS) two-factor arbitrage model

of the term structure of interest rates. The Cox, Ingersoll, and Ross (1985b) (CIR)

one-factor model is also studied as a reference. LS use as state variables the short term

interest rate and the volatility of the short-term interest rate, while SS use the spread

between the short-term and the long-term interest rate, and the long-term interest rate.

If the general equilibrium approach and the arbitrage approach are equivalent, the LS

model should perform better (worse) than the SS model in pricing short-term (long-

term) securities. Moreover, since the CIR model can be nested into the LS model, it is

expected that the latter model perform better than the former one.

The results show that, as expected, the LS model is best when pricing short-term

discount bonds, while the SS model is best when pricing long-term bonds. However,

both models have difficulties adjusting to the term structure of interest rates. This

problem is more evident in the CIR model.



1 Introduction

There are three approaches to price contingent claims when the evolution of interest rates

is stochastic. The arbitrage approach derives a partial differential equation (PDE) for

the value of any contingent claim by constructing portfolios of securities whose weights

are chosen to make the rate of return on the portfolio non-stochastic. Then, to avoid

the possibility of arbitrage profits, the rate of return on the portfolio is made equal to

the instantaneous riskless rate of interest. Examples of this method are the one-factor

models of Merton (1973), Brennan and Schwartz (1977), Vasicek (1977) and Dothan

(1978); and the two-factor models of Brennan and Schwartz (1979 & 1982), Schaefer

and Schwartz (1984) (SS), and Moreno (1996).

The general equilibrium approach, developed by Cox, Ingersoll, and Ross (1981),

(1985a) and (1985b), uses an intertemporal general equilibrium asset pricing model to

study the term structure of interest rates. In their model, the pricing equations incor-

porate anticipations, risk aversion, investment alternatives, and preferences about the

timing of consumption, and asset prices and their stochastic properties are determined

endogenously. The equilibrium price of any asset is given in terms of the underlying real

variables in the economy and it is consistent with maximizing behavior and rational ex-

pectations. As an application, Cox, Ingersoll, and Ross (1985b) (CIR hereafter), develop

a one-factor model of the term structure and use it to price bonds and bond options.

In this model the term structure of interest rates at any point in time is given by the

current level of short-term interest rate, and the volatility of the interest rate process

is proportional to the level of the short-term interest rate. A two-factor term structure

model using the general equilibrium approach can be found in Longstaff and Schwartz

(1992)(LS). They use the short-term interest rate and its instantaneous variance as state

variables, and they derive closed-form expressions for the price of discount bonds and

discount bond options. The authors find empirical support for their model.
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All these models imply term structures of interest rates that, generally, are not

consistent with the market yield curve. Thus, the models will price incorrectly the

underlying assets of most interest rate derivatives. As a consequence, a third kind of

models, consistent with the current term structure of interest rates, are constructed.

This is the approach followed by Ho and Lee (1986), using bond prices, and Heath,

Jarrow, and Morton (1992), using forward interest rates. An equivalent technique is to

extend non-consistent term structure models, using time-depending parameters that are

calibrated to make the model match the market yield curve (see, for example, Hull and

White (1990a), Black, Derman, and Toy (1990), and Black and Karasinski (1991)).

Alternative derivative models can be compared in two ways. First, we can analyze

the ability of their state variable processes to describe the evolution of interest rates. For

example, Chan, Karolyi, Longstaff, and Sanders (1992) use the Generalized Method of

Moments of Hansen (1982) as a general framework to estimate and compare one-factor

models of the short-term interest rate. They find that the most successful models in

capturing the dynamics of interest rate are those that allow the volatility of interest

rate changes to be highly sensitive to the level of the riskless rate1. The comparison of

two-factor models has received much less attention in the literature2, perhaps because

of the absence of a general econometric framework in which these models can be easily

nested.

However, a model can be successful at describing the evolution of a particular interest

rate, but it can perform poorly when pricing contingent claims. This leads us to a

second, and maybe more convenient, way of comparing alternative models: to study

the performance of the models when pricing securities. See, for example, Bühler et al.

(1999), Navas (1999), and Moraleda and Pelsser (2000).

The purpose of this paper is to compare models of the term structure in terms of

1A similar result is obtained by Navas (1999) in the Spanish market.
2Some exceptions are Dai and Singleton (2000) and Bühler, Uhrig, Walter, and Weber (1999).
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their ability to price bonds. Specifically, we compare the pricing of pure discount bonds

of the two-factor general equilibrium model of Longstaff and Schwartz (1992) and the

two-factor arbitrage approach of Schaefer and Schwartz (1984). As additional reference,

the single-factor CIR model is also used in the comparisons.

The reason for concentrating on two-factor models is that, as LS argue, single-factor

models imply that the instantaneous returns on bonds of all maturities are perfectly

correlated, which is not supported empirically. Moreover, the reason for choosing these

particular two-factor models is that they have closed-form solutions for bond prices3,4.

The remainder of the paper is organized as follows. Section 2 presents the models

under consideration. Section 3 describes the estimation and implementation of the

models. Section 4 studies the performance of the models when pricing discount bonds.

Finally, Section 5 summarizes the paper.

2 The Models

Term structure models are developed assuming stochastic processes for the dynamics

of one or more exogenous factors or state variables. Typically, single-factor models use

different specifications of the short-term interest rate process and assume that the term

structure of interest rates is a function of the level of the current riskless rate (and some

parameters). Two-factor models assume that the term structure is a function of the

current values of two state variables (frequently including the short-term interest rate).

Then, the general equilibrium or the arbitrage approach can be used to derive a par-

tial differential equation (PDE) for the value of any contingent claim. In this equation

the coefficients of the variables are functions of the parameters of the processes describ-

3Although in the SS model the solution is only an approximation.
4Balduzzi, Das, Foresi, and Sundaram (1996) and Moreno (1996) also provide closed-form expres-

sions.
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ing the term structure and of the market prices of the risks associated with the state

variables. Models based on the arbitrage approach make explicit assumptions about

the functional forms of these market prices of risk, making it possible in some cases to

reduce the number of unknown parameters to be estimated (see, for example, Brennan

and Schwartz (1979) and Schaefer and Schwartz (1984)). In these models the functional

forms of the market prices of risk may not be consistent with market data. This prob-

lem is avoided when the general equilibrium approach is used, since, in this case, the

functional forms of the market prices of risk are obtained endogenously, ensuring that

the risk premium is consistent with no arbitrage.

The pricing equation must be satisfied for the value of any security. Depending on the

asset being priced, this PDE will have different boundary conditions and, therefore, dif-

ferent solutions. In general, closed-form solutions to the pricing equation are not known,

and numerical procedures are required (see Brennan and Schwartz (1978), Courtadon

(1982), Geske and Shastri (1985), and Hull and White (1990b), among others).

2.1 The Longstaff and Schwartz (1992) model

The state variables in this model are the short-term interest rate, r, and the instanta-

neous variance of changes in the short-term interest rate, V . Using general equilibrium

considerations, LS show that the dynamics of r and V are given by

dr =

(
αγ + βη − βδ − αξ

β − α
r − ξ − δ

β − α
V

)
dt

+α

√
βr− V

α(β − α)
dz1 + β

√
V − αr

β(β − α)
dz2, (1)

dV =

(
α2γ + β2η − αβ(δ − ξ)

β − α
r − βξ − αδ

β − α
V

)
dt

+α2

√
βr − V

α(β − α)
dz1 + β2

√
V − αr

β(β − α)
dz2. (2)
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where α, β, γ, δ, η, and ξ are constants, and z1, and z2 are uncorrelated standard

Wiener processes.

If P (r, V, τ ) is the value of a pure discount bond with maturity τ , LS apply Theorem

3 of Cox, Ingersoll, and Ross (1985a) and derive a PDE for P , with boundary condition

P (r, V, 0) = 1. Making the corresponding change of variables, the solution to this

equation is given by

P (r, V, τ ) = A2ν(τ )B2η(τ ) exp(πτ + C(τ )r+D(τ )V ) (3)

where

A(τ ) =
2φ

(δ + φ) (eφτ − 1) + 2φ

B(τ ) =
2ψ

(ν + ψ) (eψτ − 1) + 2ψ

C(τ ) =
αφ

(
eψτ − 1

)
B(τ )− βψ

(
eφτ − 1

)
A(τ )

φψ(β − α)

D(τ ) =
ψ
(
eφτ − 1

)
A(τ )− φ

(
eψτ − 1

)
B(τ )

φψ(β − α)

and

ν = ξ + λ,

φ =
√
2α + δ2,

ψ =
√
2β + ν2,

π = γ(δ + φ) + η(ν + ψ).

Thus, the discount bond price is a function of r, V , and τ , and depends on the
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parameters α, β, δ, γ, η, and ξ, as well as the market price of risk λ (assumed to be

constant through time). Finally, the yield to maturity can easily be obtained as follows

Y (r, V, τ ) = − lnP (r, V, τ )

τ
. (4)

2.2 The Schaefer and Schwartz (1984) model

In this model the state variables are the spread between the short-term and the long-

term interest rates, s, and the long term interest rate, l. The dynamics of these variables

are assumed to be given by the following stochastic differential equations

ds = m(µ− s)dt+ γdz1 (5)

dl = β(s, l, t)dt+ σ
√
ldz2, (6)

where m,µ, γ, and σ are constants, and z1, and z2 are standard Wiener processes, with

instantaneous correlation ρ.

Thus, the spread is modeled as a Ornstein-Uhlenbeck process with constant volatility.

However, the volatility of the long-term interest rate is assumed to be proportional to

its level.

SS leave the drift of the long-interest rate process, β(s, l, t), unspecified since any

drift is compatible with their pricing equation. In this paper, we assume that there

is mean reversion in long-term interest rates, so that this rate follows the square root

process

dl = κ(θ − l)dt+ σ
√
ldz2 (7)

Assuming that the market price of spread risk, λ, is constant, and that the spread is
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uncorrelated with the long-term rate, i.e. ρ = 0 (consistent with the empirical evidence5),

Schaefer and Schwartz (1984) show that the value of a default free bond, P , must satisfy

the PDE

1

2
γ2Pss +

1

2
σ2lPll + Psm(µ̂− s) + Pl

(
σ2 − ls

)
− (l + s)P − Pτ = 0, (8)

with the boundary condition P (s, l, 0) = 1, where µ̂ = µ − λγ
m
.

An approximated solution to this equation is given by

P (s, l, τ ) = X(s, τ )A(τ ) exp (−B(τ )l), (9)

where

X(s, τ ) = exp

[
1

m

(
1− e−mτ

)
(s∞ − s)− τs∞ − γ2

4m3

(
1− e−mτ

)2
]
,

A(τ ) =

(
2α exp ((ŝ+ α)τ/2)

(ŝ+ α)(exp(ατ )− 1) + 2α

)2

,

B(τ ) =
2(exp(ατ )− 1)

(ŝ+ α)(exp(ατ )− 1) + 2α
,

s∞ = µ̂− γ2

2m2
,

α =
√
ŝ2 + 2σ2.

Here, ŝ depends on the current values of s and l, as shown by SS, and it is obtained

numerically equating messy nonlinear functions of ŝ. However, when the initial value of

the spread (s0) is equal to µ̂, then ŝ is also equal to µ̂.

Using the bond price, we compute the yield to maturity as in expression (4).

5See, for example, Ayres and Barry (1980) and Nelson and Schaefer (1983).
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2.3 Cox, Ingersoll, and Ross (1985b) model

In this model, the term structure of interest rates at time t is given by the short-term

interest rate r which follows the square root process

dr = ω (ϕ− r) dt+ υ
√
rdz, (10)

where ω, ϕ, and υ are positive constants, and z is a Wiener process. In this model, the

interest r is pulled towards its long-term mean ϕ at the rate ω.

The price, P (r, τ ), of any interest-rate contingent claim is the solution to the partial

differential equation

1

2
υ2(r)Prr + (ω(ϕ− r)− λ(r, t)υ(r))Pr + Pτ − rP = 0, (11)

subject to appropriate terminal and boundary conditions. Here, λ(r, t) is the market

price of short term interest rate risk, and is supposed to be λ(r, t) = λ
√
r/υ, where λ is

a constant. As in the previous two-factor models, there will be positive risk premiums

when λ is negative.

For a discount bond maturing at time T , the terminal condition is P (T, T ) = 1, and

the solution of (11) gives

P (r, τ ) = A(τ )e−B(τ )r, (12)

where

A(τ ) =

(
2γe(ω+λ+γ)τ/2

(γ + ω + λ) (eγ(T−t) − 1) + 2γ

) 2ωϕ

υ2

,

B(τ ) =
2 (exp (γτ )− 1)

(γ + ω + λ) (eγτ − 1) + 2γ
,

γ =
√
(ω + λ)2 + 2υ2.
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3 Estimation and implementation of the models

3.1 The Data

To estimate the models from historical data, we use monthly one-month U.S. Treasury

bill yields and one- and five-year taxable, noncallable, U.S. Treasury bonds yields for

the period June of 1964 through December of 1989 (307 observations). The T-bill data

set was originally constructed by Fama (1984) and subsequently updated by the Center

for Research in Security Prices (CRSP). The yields are based on the average of bid and

ask prices for Treasury bills and are normalized to reflect a standard month of 30.4

days. The Treasury bond yields are obtained from the Fama and Bliss (1987) data set,

updated by CRSP as well. All yields are expressed in annualized form. This data set

has been used by Chan et al. (1992), Longstaff and Schwartz (1992), Longstaff and

Schwartz (1993), and Nowman (1997).

Table 1 shows the means, standard deviations, and first three autocorrelations of

the one-month T-bill yield, the five-year Treasury bond yield, and the spread between

one-month T-bill and five-year Treasury bond yields. The unconditional means of the

one-month, five-year, and spread yields are 6.829%, 7.936%, and -1.107% , with standard

deviations of 2.809%, 2.518%, and 1.463%, respectively6. The time series of the three

rates during the sample period are shown in Figure 1.

3.2 Estimation of the Longstaff and Schwartz (1992) model

LS express the stochastic processes for r and V , given in expressions (1) and (2), as

difference equations for r and V , that can be rearranged to give the following econometric

6Note that the statistics for the one-month rate are slightly different from those reported by Chan
et al. (1992) and Longstaff and Schwartz (1992). The difference is due to the way of compounding the
monthly rates. We use discretely compounded annual interest rates. Plots of the one-month rate and
its actual volatility are practically identical to the ones shown by these authors.
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model

rt+1 − rt = α0 + α1rt + α2Vt + et+1, (13)

et+1 ∼ N(0, Vt),

Vt = β0 + β1rt + β2Vt−1 + β3e
2
t (14)

This is a GARCH(1,1) model with conditional variance in the mean equation. In

this model, the level of the interest rate appears as an additional regressor in both the

mean and the variance equations.

The six stationary parameters of the LS model (α, β, γ, δ, η, and ξ) can be obtained

from the estimated coefficients of the GARCH model. However the relationship be-

tween the parameters and the coefficients is very complex. Consequently, Longstaff

and Schwartz (1993) suggest an alternative way of computing the parameters of their

continuous-time model. They estimate the GARCH model to obtain a time series of

conditional variances, that is used together with the original time series of interest rates

to calculate α, β, γ, δ, η, and ξ as follows

α = min
(
Vt
rt

)
,

β = max
(
Vt
rt

)
,

δ =
α(α+ β) (βE{rt} − E{Vt})
2 (β2Var{rt} − Var{Vt}) ,

γ =
δ(βE{rt} − E{Vt})

α(β − α)
,

ξ =
β(α+ β)(E{Vt} − αE{rt})
2 (Var{Vt} − α2Var{rt}) ,

η =
ξ(E{Vt} − αE{rt})

β(β − α)
,

where E{·} and Var{·} denote expected value and variance, respectively.
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In Table 2 we report the estimates of the GARCH model7. We see that all the coef-

ficients are significant at the 0.01 level except the coefficient of the conditional variance

in the mean equation (α2).

In Figure 2 we plot the actual volatility 8 of one-month Treasury bills and the forecast

volatility implied by the estimates of the GARCH model. We see that the volatility

increases with the level of the interest rate, which is consistent with the CIR model.

Finally, we use our time series of interest rates and GARCH volatilities to calculate

α, β, γ, δ, η, and ξ. The results are shown in Table 3. The conditional volatilities are

also needed to price bonds, since the short-term volatility is one of the state variables

in the LS model.

3.3 Estimation of the Schaefer and Schwartz (1984) and CIR

(1985b) models

In these models, the dynamics of the state variables can be represented as

dx = a(b− x)dt+ cxddz, (15)

where the relationship of a, b, c and d with the original parameters of the processes is

given in the following table

7We use the econometric package EViews 3.1 to estimate the model.
8Measured as the absolute value of the month-to-month change in the one-month Treasury bill yield.
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Spread Long-term rate Short-term rate

x s l r

a m κ ω

b µ θ ϕ

c γ σ υ

d 0 1/2 1/2

To estimate these models from historical data, we follow Nowman (1997) and use the

Gaussian estimation method. We first express equation (15) in a discrete-time setting

as

xt = e−a∆txt−1 + θ
(
1− e−a∆t

)
+ ηt (t=1, 2 . . . T) (16)

where ∆t is the time interval, and ηt satisfies the conditions

E (ηt) = 0,

E (ηsηt) = 0, (s �= t),

E
(
η2
t

)
=

c2x2d
t−1

2a

(
1− e−2a∆t

)
.

We then obtain the parameter estimates maximizing9 the Gaussian log-likelihood func-

tion of the process (16), given by

L(a, b, c, d) = −1

2
ln 2π − 1

2
lnE

(
η2
t

)
− 1

2

[
xt − e−a∆txt−1 − b

(
1− e−a∆t

)]2
E (η2

t )
. (17)

This expression is the exact log-likelihood function for the spread process, but only

an approximation of it for the long and short rate processes (see Brown and Schaefer

(1996)).

9We use the FORTRAN routine MINIM for function minimization using the simplex method.

12



In the SS model, the long-term interest rate process describes the dynamics of the

yields of a riskless consol bond. Brennan and Schwartz (1982) approximate the consol

rate, l, by the annualized yield to maturity on the highest-yielding U.S. Treasury Bond

with a maturity exceeding 20 years; if no such bond is available in a particular month,

they use the highest-yielding bond with a maturity of more than 15 years. In this paper,

because of data constraints, and only as an approximation, five-year U.S. Treasury bond

yields are used instead.

Table 4 shows the parameter estimates for the SS and CIR models. t-statistics are

provided in parentheses. We see that the parameters are significant at the 0.01 level,

with the exception of the mean reversion speed (κ) of the long rate process in the SS

model, which is significant only at the 0.10 level10. The long-term means, θ, of the long

rate, spread, and short rate processes are 8.6271%, -1.1210%, and 6.9965%, respectively,

which are close to the unconditional means (7.936%, -1.107%, and 6.829%, respectively).

The speeds of adjustment, κ, of each rate to its mean are 0.2083, 2.2942, and 0.6647,

for the long rate, spread, and short rate, respectively. This implies a mean half-life11 of

3.3278, 0.3021, and 1.0428 years, respectively, indicating that the mean reversion effect

is stronger in the spread process. Finally, the estimates of the parameter σ are 0.0509,

0.0313, and 0.1140 for the long rate, spread, and short rate, respectively.

4 Pricing Bonds

Before pricing interest-rate claims with these three models we must estimate the corre-

sponding market prices of interest-rate risk, λ. We do so from monthly cross-sections of

one-month Treasury bill and five-year Treasury bond yields, using the parameter esti-

10This fact, however, does not affect the valuation of bonds, since the mean reversion parameters of
the long rate process do not appear in the pricing formulas.

11Defined as the time that the rate needs to achieve the halfway between the current level and the
long-run mean θ. It is computed as ln(2)/κ.
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mates obtained from the time-series data. Each month, we minimize the sum of squared

errors (SSE), i.e.

min
λ

2∑
i=1

(yi − ŷi)
2 (18)

where yi, and ŷi, stand for market yield and theoretical yield, respectively, and i = 1, 2

represents the two maturities considered.

Figure 3 plots the estimates of each λ in each model. We see that the parameter is

unstable through time, and ranges from -0.6191 to -0.3128 in the LS model, from -0.7245

to 0.1984 in the SS model, and from -0.4670 to 0.4710 in the CIR model. To compute

bond prices, we use the sample means of λ, given by -0.4533 in the LS model, -0.3396

in the SS model, and -0.0687 in the CIR model. Note that these means imply positive

risk premiums.

To price bonds with the SS model, we assume that ŝ ≈ µ̂, even though the value of

the spread is not equal to µ̂ in our sample12. This assumption is supported by the fact

that bond prices are not very sensitive to the value of ŝ.

4.1 One-Month Treasury Bills

Figure 4 graphs one-month T-bill yields versus the predicted yields of the LS, SS, and

CIR models (computed using equations (3), (9), and (12), respectively). The approxi-

mation on the three cases seems to be very good. To compare the models, we use the

mean absolute percentage error (MAPE) measure, defined as

MAPE =
1

n

n∑
i=1

|yi − ŷi |
yi

, (19)

12The mean value of the spread is -0.01107, while µ̂ = −0.0064
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where n is the number of observations.

Given the characteristics of the models, we expect two results. First, LS nest the

single-factor CIR model within their two-factor model of the term structure. Thus, the

LS model is likely to be more successful at describing the evolution of short rates than

the CIR model, and should be superior in pricing contingent claims. Second, LS use the

short-term interest rate and its volatility as state variables to describe the term structure

of interest rates, while SS use the long-term rate and the spread between the short-term

and the long-term rates. Given that, as LS argue, the equilibrium approach has several

advantages over the arbitrage approach13, the LS model should be superior also to the

SS model in pricing short-term contingent claims.

The second column of Table 5 reports the MAPE for each model for one-month T-

bills. We see that, as expected, the pricing error of the LS model is substantially smaller

than the others (0.2042% versus 1.8063% for the SS model and 1.0701% for the CIR

model). Nonetheless, the three models perform reasonably well. Note that the pricing

error of the one-factor CIR model is smaller than that of the SS two-factor model, which

is not surprising given that, in the CIR model, the volatility of the short-term rate

depends on the level of the riskless rate, which is supported by the empirical evidence.

4.2 One-Year Treasury Bonds

To study the pricing of medium term bonds, we use 1-year Treasury bond data. Figure 5

plots observed one-year T-bond yields versus theoretical yields for the three models. Note

that the pricing errors are greater than before. Table 5 shows that the MAPE of the

LS model dramatically increases to 10.0973%, indicating that this model has problems

to pick up the dynamics of one-year rates. The pricing errors in the CIR model also

13The variables which determines contingent claim prices, the dynamics of these variables, and the
functional forms of the market prices of risk are all endogenously determined.
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increase substantially, to 8.9728%, and the MAPE in the SS model increases the least,

to 6.0622%, which is probably due to the fact that SS incorporate explicity information

about diferent points of the yield curve.

4.3 Five-year Treasury Bonds

Finally, it is interesting to analyze the ability of the models to price longer term bonds.

Since the SS model uses the long-term interest rate as one of the state variables, we

expect it to be superior to the CIR model, that uses only the short-term rate, and to

the LS model which does not use any long-term state variable. Moreover, the LS model

should perform better than the CIR model since it is a general case of the CIR model that

uses two short-term state variables. Figure 6 confirms our expectations. We see that the

pricing error increases in the LS and the CIR models, while it decreases significantly in

the SS model. In Table 5 we see that the LS and CIR models do a poor job pricing 5-year

Treasury bonds, incurring in MAPEs of 14.6607% and 18.3520%, respectively. However,

the SS model prices the five-year bond ever better that one-month bond, producing a

MAPE of just 1.2137%.

4.4 Linear Yield Prediction

To further compare the performance of the models, we test them for unbiased linear

prediction of the actual one-month, one-year, and five-year U.S. Treasury bond yields.

For each model, the following linear regression is estimated

ŷi = α0 + α1yi + εi (20)

εi ∼ N(0, ζ),
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where ζ is constant.

If the estimated intercept term, α0, is not significantly different from 0, and the

coefficient of the actual bond yields, α1, is not significantly different from 1, we cannot

reject the hypothesis that the computed bond yield is a linear unbiased predictor of

the actual bond yield. The R2 of the regressions provides an additional measure of the

goodness of fit of the models.

Table 6 provides the results of the regressions of the computed yields on the actual

ones. For one-month Treasury bills (rows 2-7), the intercept term is significantly different

from 0, and the slope is significantly different from 1 (at the .01 level) for the three

models. Therefore, the hypothesis that the model is unbiased linear predictor is rejected

in the three cases. However this should not be discouraging since the R2 of the regressions

are almost identically equal to 1, implying that the biases are very small.

In rows 8-13 we present the results for 1-year Treasury bonds. We reject, at the .01

level, that the LS, SS and CIR models are unbiased linear predictors of 1-year Treasury

bond yields, since the intercept term is significantly different from 0 or the slope is

significantly different from 1. These results should be interpreted with care since a

model can be a biased linear predictor, but can explain much more of the variance of

the actual yields than a model for which we fail to reject the null hypothesis.

Finally, in rows 14-19 we see that for 5-year Treasury bonds we reject, at the .01

level, that the CIR model is unbiased linear predictor of 5-year Treasury bond yields.

Moreover, the goodness of fit of the model, as measured by R2, is poor (0.73043).

However, we fail to reject that LS and SS models are unbiased linear predictors of

the five-year yields. This result is more interesting for the SS model, given that the R2

is very high (0.99757). In general, these results are consistent with those given by the

MAPE measure.
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5 Summary and Conclusions

This paper compares the Longstaff and Schwartz (1992) general equilibrium model and

the Schaefer and Schwartz (1984) arbitrage model of the term structure of interest rates.

The two models differ in: (1) the considerations they use to derive the partial differential

equation for pricing assets; (2) LS use two short-term state variables, while SS use one

short-term and one long-term variable; and, (3) LS develop an exact solution, while SS

offer an approximated analytical solution to the PDE.

Two results are expected. On the one hand, since the CIR model can be nested

into the LS model, the LS model should perform better than the CIR model in pricing

both short-term and long-term bonds. On the other hand, if the general equilibrium

approach and the arbitrage approach are equivalent, the LS model should perform better

(worse) than the SS model in pricing short-term (long-term) securities, since it uses two

short-term state variables.

Our empirical results support both conjectures. For one-month Treasury bills, the

three models perform relatively well, with mean absolute percentage errors (MAPE)

smaller than 2%. The LS model performs best, with a MAPE of only 0.2042%. The

performance of the three models decreases for medium-term bonds. For five-year bonds,

however, the results are mixed but expected, since the mean relative errors are greater

than 14% and 18% in the LS and CIR models, while that for the SS model the error is

just about 1%.

Thus, we see that the three models considered have difficulties adjusting to the

market yield curve. To fit the curve, generalized versions of these models can be used

(in the ways suggested by Longstaff and Schwartz (1993) and Hull and White (1990a)).

However, even in this case, there is no guarantee that the models will price interest-rate

options accurately (see Navas (1999)).
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Table 1: Descriptive statistics.

r l s
Mean 0.06829 0.07936 -0.01107
Standard Deviation 0.02809 0.02518 0.01463
ρ1 0.94220 0.98437 0.82618
ρ2 0.89481 0.96679 0.73261
ρ3 0.85182 0.95188 0.63359

Summary statistics for one-month U.S. Treasury bill yield, r, five-year Treasury bond
yield, l, and the spread between one-month U.S. Treasury bill and five-year U.S. Treasury
bond yields, s, from June 1964 through December 1989. Monthly data is used (307
observations). The autocorrelation coefficient of order i is denoted as ρi.
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Table 3: Stationary parameters of the Longstaff and Schwartz (1992) two factor model.

Parameter MLE Estimate
α 0.000102
β 0.01248
γ 2.7553
δ 0.00452
η 0.2258
ξ 0.4421

The parameters are obtained from the maximum likelihood estimates of the parameters
of a GARCH model for monthly changes in the one-month U.S. Treasury bill yield. The
data are monthly, from June 1964 through December 1989 (306 observations).
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Table 4: Gaussian estimates of the Schaefer and Schwartz (1984) (SS) and the Cox,
Ingersoll and Ross (1985b) (CIR) two-factor models.

a b c d Log-Likelihood
SS Long-term process 0.208287 0.086271 0.050864 0.5 1255.7598

(1.6836) (5.6389) (24.3462)
Spread process 2.294191 -0.011210 0.031346 0.0 1033.8872

(4.9093) (-4.1581) (22.6858)
CIR Short-rate process 0.664686 0.069965 0.114051 0.5 1041.2073

(2.7103) (7.7110) (23.9853)

The data are monthly one-month U.S. Treasury bill yields and five-year U.S. Treasury
bond yields, during the period from June 1964 to December 1989 (306 observations). It
is assumed that, in the Shaefer and Schwartz model, the long-term interest rate follows
a square root process. The continuous-time model is dx = a (b− x) dt + cxddz, where
x = l and x = s for the long-term and spread processes, respectively, in the Shaefer and
Schwartz model, and x = r in the CIR model. Gaussian estimates (expressed in yearly
basis) with t-statistics in parentheses are presented for each model.
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Table 5: Mean Absolute Percentage Errors (MAPE) for Treasury bills and Treasury
bonds of different maturities.

Model Maturity
1 Month 1 Year 5 Year

Longstaff-Schwartz 0.2042% 10.0973% 14.6607%
Schaefer-Schwartz 1.8063% 6.0622% 1.2137%
CIR 1.0701% 8.9728% 18.3520%

Comparison of Longstaff and Schwartz (1992) two-factor general equilibrium model,
Schaefer and Schwartz (1984) two-factor model, and Cox Ingersoll and Ross (1985) one-
factor model. The data are monthly one-month U.S. Treasury bill and five-year U.S.
Treasury bond yields from June 1964 to December 1989. The comparisons are made in
terms of the mean absolute percentage error (MAPE) defined as 1

n

∑n
i=1

|yi−ŷi|
yi

, where yi
is the actual bond yield in month i, and ŷi is the computed bond yield in month i.
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Table 6: Test for unbiased linear prediction of market yields.

Maturity Model α0 α1 R2

1 month

Longstaff-Schwartz 0.0001∗ 0.9999∗∗ 1.0
(175.07) (-5.64)

Schaefer-Schwartz 0.0019∗ 0.9792∗∗ 0.99823
(11.03) (-8.67)

CIR 0.0019∗ 0.9755∗∗ 1.0
(45020.2) (-42628.7)

1 year

Longstaff-Schwartz −0.0074∗ 1.0224 0.91259
(-5.12) (1.23)

Schaefer-Schwartz 0.0005 0.9551∗∗ 0.96897
(0.59) (-4.59)

CIR 0.0125∗ 0.7697∗∗ 0.91241
(11.49) (-16.87)

5 years

Longstaff-Schwartz 0.0005 0.9399 0.72986
(0.19) (-1.83)

Schaefer-Schwartz -0.0002 1.0018 0.99757
(-0.91) (0.63)

CIR 0.0504∗ 0.2998∗∗ 0.73043
(58.08) (-67.14)

Comparison of Longstaff and Schwartz (1992) two-factor general equilibrium model,
Schaefer and Schwartz (1984) two-factor model, and Cox Ingersoll and Ross (1985)
one-factor model. Each model is tested for unbiased linear predictor of the actual one-
month U.S. Treasury bill and five-year U.S. Treasury bond yields from June 1964 through
December 1989. For each model, the following regression is estimated:

ŷi = α0 + α1yi + εi

εi ∼ N(0, ζ)

where yi is the actual bond yield in month i, ŷi is the computed bond yield in month i,
and ζ is a constant. The t-values are in parentheses in columns 3 and 4, respectively.

* Significantly different from 0 at the .01 level
** Significantly different from 1 at the .01 level
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Figure 1: Short-term rate, long-term rate, and spread from June 1964 through December
1989.
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Volatility of one-month Treasury bills
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Figure 2: Volatility of one-month Treasury bills.

The actual volatility (dashed line) is measured as the absolute value of the month-to-
month change in the one-month Treasury bill yield. The forecast (solid line) is the square
root of the conditional variance implied by the estimates of the GARCH model.
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Figure 3: Estimation of the market price of risk (λ).
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Cox, Ingersoll and Ross (1985) Model
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Figure 4: One-month Treasury bill yields.
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Figure 5: One-year Treasury bond yields.
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Figure 6: Five-year Treasury bond yields.
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