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Abstract

A common way to incorporate discontinuities in asset returns is to add a Poisson process to a
Brownian motion. The jump-diffusion process provides probability distributions that typically
fit market data better than those of the simple diffusion process. To compare the performance of
these models in option pricing, the total volatility of the jump-diffusion process must be used in
the Black-Scholes formula. A number of authors, including Merton (1976a & b), Ball and
Torous (1985), Jorion (1988), and Amin (1993), miscalculate this volatility. We show that if an
investor uses Merton's volatility rate in the Black-Scholes (1973) model, she will underprice
(overprice) some options, relative to the jump-diffusion model of Merton (1976a). However, if
she used the correct volatility, she would overprice (underprice) the same options. We also show
that the price difference between these models can be larger for some options and smaller for
others than what was previously reported.
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Abstract

A common way to incorporate discontinuities in asset returns is to add a Poisson process
to a Brownian motion. The jump-diffusion process provides probability distributions
that typically fit market data better than those of the simple diffusion process. To
compare the performance of these models in option pricing, the total volatility of the
jump-diffusion process must be used in the Black-Scholes formula. A number of authors,
including Merton (1976a & b), Ball and Torous (1985), Jorion (1988), and Amin (1993),
miscalculate this volatility. We show that if an investor uses Merton’s volatility rate
in the Black and Scholes (1973) model, she will underprice (overprice) some options,
relative to the jump-diffusion model of Merton (1976b). However, if she used the correct
volatility, she would overprice (underprice) the same options. We also show that the
price difference between these models can be larger for some options and smaller for

others than what was previously reported.
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The diffusion process is widely used to describe the evolution of asset returns over
time. In option pricing it allows the use of Black and Scholes-type formulae to value
European options on stocks, foreign currencies, interest rates, commodities and futures.
Under this process, instantaneous asset returns are normally distributed. However, the
distributions observed in the market exhibit non-zero skewness and higher kurtosis than
the normal distribution®, which produces pricing errors when the Black-Scholes formula

is used.

A way to obtain distributions consistent with market data is to assume that the
stock price follows a jump-diffusion process. Merton (1976b) develops a model in which
the arrival of normal information is modeled as a diffusion process, while the arrival
of abnormal information is modeled as a Poisson process. The jump-diffusion process
can potentially describe stock prices more accurately at the cost of making the market
incomplete, since jumps in the stock price cannot be hedged using traded securities. If
the market is incomplete, the payoffs of the option cannot be replicated, and the option
cannot be priced. To overcome this problem, Merton assumes that the jump risk is
diversifiable and, consequently, not priced in equilibrium. He then derives a closed-form

expression for the price of a call option.

To study the performance of the jump-diffusion model, Merton (1976a) compares
option prices computed with his model with those obtained with the Black-Scholes for-
mula. He concludes that there can be significant differences in option prices for deep
out-of-the-money (DOTM) options and short maturity options when there are large and
infrequent jumps. However, for this comparison to be meaningful, the total volatility
of the jump-diffusion process (v) must be used in the Black-Scholes formula. Instead,

Merton (1976a & b) uses a “volatility rate” (vys) that is smaller than v.

Similarly, Ball and Torous (1985) analyze a sample of NYSE listed common stocks

1See, for example, Fama (1965), Jorion (1988), Hsich (1988), Bates (1996), and Campa, Chang, and
Rieder (1997).



and find the existence of lognormal jumps in most of the daily returns considered. They
then study Merton and Black-Scholes call option prices and find small differences. How-
ever, rather than using the total volatility of the process, they follow Merton (1976a &

b) and use the same volatility rate.

Other examples where vy, is used are Jorion (1988), who adapts Merton’s model to
price foreign currency options, and Amin (1993), who develops a discrete-time option

pricing model under a jump-diffusion process.

Despite the empirical evidence, most analysts routinely use the Black-Scholes model
to price options. As mentioned before, Merton (1976a) shows that the Black-Scholes for-
mula can substantially undervalue DOTM options when there are jumps in stock prices.
As these options become less DOTM, the underpricing turns quickly into overpricing
Hence, it is important for practitioners to know the critical stock prices where these

shifts occur.

In this paper we determine these crossover points using the total volatility of the
jump-diffusion process. We show that some options undervalued with v, are in fact
overvalued and vice versa. We also find that, generally, the difference in option prices
given by the Black-Scholes and Merton models is greater for near-the-money options
(NTM) and smaller for DOTM and deep in-the-money (DITM) options than what was

previously reported .

The rest of the paper is organized as follows. Next section briefly reviews the Merton
(1976b) model and presents the total variance of the jump-diffusion process. Using this
variance, we study in Section 2 the pricing error of an investor who uses the Black-
Scholes formula to price options when the stock price follows a jump-diffusion process.
We compare this error with the error previously reported in the literature. Finally, we

conclude with Section 3.



1 Merton’s Jump-Diffusion Formula

We consider a continuous trading economy with trading interval [0, 7] for a fixed 7 > 0, in
which there are three sources of uncertainty, represented by a standard Brownian motion
{Z(t) : t € [0,7]} and a independent Poisson process {N(t) : t € [0,7]} with constant
intensity A and random jump size Y on the filtered probability space (2, F,Q,{F;:t €
[0,7]}).

We define F;, = FZV FN and F = F,, where FZ and F\ are the smallest right-
continuous complete o-algebras generated by {Z(s) : s < t} and {N(s) : s < t} respec-
tively.

Merton (1976b) assumes that the stock price dynamics are described by the following

stochastic differential equation

2 = (o= Ak)dt+ odZ(t) + (Y(t) — 1) dN(¢), (1)

where K = E{Y (t) — 1} is the expected relative jump of S(t).
Assuming that jump sizes are lognormally distributed with parameters p and d, and
that the jump risk is diversifiable, Merton shows that the option price is given by

oo e—z\’T(}\/T)n

F<S<t)’ Ty E? 027 T, 527 )\) = Z

n=0

W(S(t),7,E,02,1,) (2)

n!

where W (S(t), 7, E,02,1,) is the Black-Scholes option price, and
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Unlike in the diffusion case, when changes in stock prices are given by expression (1)
the instantaneous stock returns are not normally distributed. The distribution will
have non-zero skewness and will exhibit leptokurtosis when compared to a Gaussian
distribution, which is consistent with the empirical evidence. There will not be, in
general, a closed-form expression for the density function of the distribution, but we can
easily compute the moments of stock returns. Applying It6’s formula to (1) we have

that, under @, the expected natural logarithm of the stock price is given by

E{ln%} = <a—M—%2>t+E{E{1nY(n(t))lfTN}}

where Y (n) =11~ Vi, {Y;,i = 1,2,...,n} are the random jump amplitudes, and n(t) is

a Poisson random variable with parameter \t.

Since the Brownian motion and the Poisson process are independent by construction

(see Protter (1995)), to calculate the variance, we can write

Var {ln%} =Var{cZ(t)} + Var{lnY(n(t))} (3)

Notice that -7 ; InY; is conditionally distributed as a Gaussian with mean np and
variance nd%. However, this does not imply that Var {InY(n(t))} = Atd? since now n(t)
is random. Using the fact that for any random variable u, Var{u} = —F{u}? + F {u*}

we have that

Var {nY(n(t)} = —E{lnY(n(t)}* + E{[InY(n(t))}

— —(wp? + B{E{nYm)P |7})



= —(\p)? + E{n(t)0” + n(t)*p?}
= —(Atp)?+ 2N+ p? (Mt + N2#2)

= A +0°)t, (4)

Hence, the total variance of the natural logarithm of the stock price under a jump-

diffusion process is given by
S(t) 2 2, 52

A similar result can be found in Press (1967), Navas (1994), and Das and Sundaram
(1999). Merton (1976a & b), Ball and Torous (1985), Jorion (1988), and Amin (1993)
miscalculate this variance as (o2+\d?)¢, which will only be correct when = 0. However,
they assume that the expected jump size is zero, i.e. E{Y — 1} = 0, which is equivalent

2 . . . . . .
to take u = —%. Obviously, when §2 increases the error in the variance will increase.

2 Implications for Option Pricing

If an investor prices options according to the Black-Scholes model but “the market”
prices options according to Merton’s jump-diffusion process, she will underprice out-
of-the-money and in-the-money options and she will overprice at-the-money (ATM) op-
tions, since that the true stock return distribution will have fatter tails than the Gaussian
distribution. Hence, if the investor estimates the volatility parameter of the diffusion
process implicitly from market prices, she will observe the well known volatility smile.
In Figure 1 we price a call option with different exercise prices with the Merton (1976b)
model using the parameters 7 = 0.5,02 = 0.05,7 = 0.10, u = —0.025, 5% = 0.05, and

A = 1. Then, we take those prices as market prices and compute implied volatilities for



the Black-Scholes formula. We observe that in order to fit “market” prices correctly,
the volatility of the diffusion process in the Black-Scholes model must be set higher for
out-of-the-money (OTM) and ITM options than for ATM options. The curve is not

symmetric because of the presence of skewness in the distribution of stock returns.

Insert Figure 1 about here.

As an example of the potential pricing “error” that our investor will face, we replicate
in Table 1 part of Table IV of Ball and Torous (1985), using v? instead of v, (recall
that the total variance of the process per unit of time, v?, is o + A (p? + 6%), while 1%,
is defined as 02 + A\§?). In the table we compare Merton and Black-Scholes prices for
different parameters of the jump-diffusion process. We value a 6-month stock call option
with exercise price 35 when the stock is trading at 38. The variance of the diffusion part

is 02 = 0.05, and the interest rate is r = 0.10.

Insert Table 1 about here.

We first follow Merton (1976a & b) and Ball and Torous (1985) and study the
case where the expected relative jump size of the stock (k) is 0, i.e. we take p =
52

—%. To be consistent with their notation, we represent Merton prices by F and

the investor appraised option value using Black-Scholes formula by F., that is F' =

F(S(t), 7, E, 0% r; 1,62 \) and F.(v?) = W(S(t), 1, E,v? ).

In the second row of the table, we assume that the variance of the log of the jump
size is equal to the variance of the diffusion (6% = 0.05), and that there is only one jump
per year (A = 1). This implies that the variance of the diffusion process is practically
half of the total variance of the process. With these values, the Merton option price
is ' = 5.9713. As a reference, the Black-Scholes price if there were no jumps would

be F,.(0%)=5.3396. However, this will not be the appraised option value of an investor

7



who incorrectly believes that the stock price follows a diffusion process and estimates
the volatility from historical data. As stated before, her estimation of the variance
will be ©2=0.10062 and her appraised option value F.(v?)=6.0711. In this case the
investor will overprice the option by only 1.7%. However, the pricing error increases
dramatically as there are larger and fewer jumps per year. For instance, when 62 = 5
and A = 0.01, Merton option price is ' = 5.4560, while the investor appraised value will
be F,(1*)=6.8168 (a 24.9% higher). Notice that in this case the variance of the diffusion

part accounts only for 30.77% of the total variance of the process.

Table 1 also shows the appraised option values incorrectly computed by Ball and
Torous (1985) using vy, Fu(v3,). For the case 2 = 0.05 and A = 1.00, we have that
v3; = 0.10 and F,(v3,)=6.06283, while F.(v*)=6.07110, just a 0.13% higher. However,
as the volatility (and magnitude) of the jumps increases and their frequency decreases,
the difference between F.(v32;) and F.(v?) increases substantially. For example, when
62 =5 and A = 0.01, F.(v3,;)=6.06283, but F,(r*)=6.81684. Hence, the investor using
vy in the Black-Scholes formula would observe an overpricing of 11.12%, while the actual

error (using v) will be 24.9%.

An interesting question is whether the lack of significant differences between the
Black-Scholes and Merton model prices found by Ball and Torous (1985) could be due
to their miscalculation of the total volatility of the process. Using their parameter
estimates, we find that the difference between v and vy, is insignificant in most of
the stocks. Thus, using the correct volatility measure apparently will not change their
results. However, rows 5-16 of Table 1 show that if we relax Ball and Torous’ assumption
that the mean relative jump size is zero, the difference in option prices can be large. For
example, when investors expect one jump per year that will produce a mean relative
jump in stock price of -20% (row 11), F = 6.6872, F.(v*) = 6.0628, and F.(v3,)=0.8066.

That is, an investor using incorrectly the Black-Scholes formula and miscalculating the



volatility of the process will underprice the option by 9.3%, while that using the correct
volatility she will overprice it by 1.8%. Hence, the restriction imposed on the jump size
together with the miscalculation of the volatility could partially explain the results of

Ball and Torous (1985).

We can further analyze the pricing errors standardizing the variables as in Merton
(1976a). He also considers the special case in which p = —%. Substituting £ = 0 into

equation (2), the option pricing formula simplifies to

P iﬂ ) sy, 0?1, (6)

n!

where 02 = o2 + %52.

If we define W/(S,7) = W(S,7,1,1,0), it is easy to show that
W(S,1,E,d%,r)

W'(X,7,) = ,
( ’T) Ee-T7

— S — 2
where X = Fe—rr and Th = 0,T.

With this notation, we rewrite equation (6) as

00 L —AT )™
F:Ee_TTZM

n=0

W'(X, 7). (7)

n!
Similarly, we can express the investor appraisal value of the option using v, as
F.(vi)) =W(S,7,E,vi,r) = BEe "W'(X,7), (8)

where 7 = 12,7, and can be considered as a maturity measure of the option.



Merton (1976a) defines two other standardized variables: T', a variance measure?, and
A, the expected number of jumps during the life of the option divided by the maturity

measure 7. Their expressions are given by

62
= -
Vi
A = )\;
=

From these definitions it is easy to show that 7, = (1 — I')7 + nf and A7 = AT.

Finally, from equations (7) and (8) we can express the option prices normalized by

the present value of the exercise price as

00 e—Aﬂ" AT T
[ = Z:O%W' (X,(l—F)f—i—nK) ,and (9)
2
for = ZE_MT ) _ W(X,7). (10)

To analyze how the pricing error changes as there are fewer but larger jumps in the
stock price, we study three cases. We use a maturity measure of (7) of 0.05, representing,

for example, a two-month option with annual 2, of 0.30.

Figure 2 shows the absolute and relative normalized pricing errors, defined as f — f.
and % respectively, for different stock prices. We consider relatively small and frequent
jumps in stock prices: I' = 0.1, A = 5. For our option, this implies that there are 1.5
jumps per year with annual variance (§?) of 0.02 and a volatility of the diffusion part of
51.96%. We plot the error for both vy; and v. We see that the errors computed with vy,
are very similar to those obtained with v. If the investor incorrectly prices options with

the Black-Scholes formula when the stock price follows a jump-diffusion process, she will

2Notice that I' does not represent the variance of the jump process divided by the total variance of
the jump-diffusion process, as stated by Merton (1976a).
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underprice DOTM and DITM options and overprice NTM options. The relative error is
very small for DITM and NTM options (less than 0.5%), but it increases dramatically
for DOTM options.

Insert Figure 2 about here.

In Figure 3 we also consider small jumps, but they occur less frequently and with
higher variance: I' = 0.1, A = 0.01. In our example, this implies A = 0.003, §2 = 10, and
o = 51.96%. We see that now the errors computed with vy, are much smaller than the
real ones (those obtained with v). For example, when the standardized stock price, X,

is 0.61 the relative pricing error with vy, is -1.27%, while the error with v is -53.54%.

Insert Figure 3 about here.

In Figure 4 we have very large but infrequent jumps: I' = 0.9,A = 0.01, which
implies A = 0.003, 2 = 90, and ¢ = 17.32%. We observe that in this case the pricing
errors between the Merton (1976b) and the Black-Scholes models are much larger, and

that the difference between the errors computed with vy, and v increases substantially.

Insert Figure 4 about here.

From these figures, it seems that the impact of using the correct volatility when
comparing Black-Scholes and Merton model prices is significant only for unreasonable
parameter values. However, this is not necessarily the case. In Figure 5 we study
the scenario in which 7 = 0.0492, I' = 0.3670, and A = 1.8084. This represents, for
example, a one-year option with an annual Merton’s volatility rate (/) of 0.2218, when
the number of jumps per year (\) is 0.0890 and the volatility of the diffusion part (o) is
0.1765. These values are obtained from Andersen and Andreasen (1999), who estimate

the jump-diffusion parameters for a sample of S&P 500 index options, without assuming

11



that u = —%. Notice than in this case, the total volatility of the process (v) is 0.3459,
considerably higher than Merton’s volatility rate. An investor using vy, in the Black-
Scholes formula will observe a pricing error that is larger (in absolute value) for DITM
options and smaller for most of the other options than what she would actually observe
in the market (using v). Moreover, if the normalized stock price (X) is greater than
0.94, the Black-Scholes model with v,; underprices the option, while with v the model
overprices the option. For example, when S = 100 and £ = 100 (X = 1.10) an investor
using vy in the Black-Scholes formula will underprice the option by 7.85%, when in fact
the model overprices it by 18.33%. Thus the practical relevance of the miscalculation of

the total variance of the jump-diffusion process may not be insignificant.
Insert Figure 5 about here.

Finally, in Tables 2-5 we replicate Tables I-IV of Merton (1976a) using v instead of
vy. For different standardized parameter values, these tables report the stock prices at
which Black-Scholes price equals Merton price, the stock prices at which there is a local
maximum of the absolute value of the pricing error, the maximum percentage overes-
timate of option price using Black-Scholes model, and the percentage underestimate of

option price at stock price equal to 0.5 of present value of exercise price, respectively.

In Table 2 we see that the crossover points differ from those reported by Merton. For
example, when 7 = 0.30, I' = 1, and A = 5, Black-Scholes and Merton option prices are
equal when the normalized stock price is 0.572, while Merton (1976a) reports a value of
0.634 (more than 10% higher). Since DOTM options, significantly underpriced by the
Black-Scholes formula, turns sharply into significantly overpriced options, a small error
in the computation of the crossover points can have an important effect on the study of

these options.

12



In the tables, we also observe that the percentage pricing error is very large when
there are few but large jumps (A small and T large) for short maturity options (7 small).

These are also the cases in which the pricing errors reported here differ the most from

those of Merton (1976a).

Insert Tables 2-5 about here.

3 Conclusions

If the true process describing the dynamics of stock returns is a jump-diffusion process,
but an investor incorrectly believes that stock returns follow a diffusion process, she
will use the Black-Scholes formula to price options. If she estimates the volatility of
the diffusion process from time series data, she will estimate the total volatility of the
jump-diffusion process. When she uses this volatility in the Black-Scholes formula, she
will observe a pricing error. Merton (1976a), Ball and Torous (1985), Jorion (1988) and
Amin (1993) have analyzed this error. However, instead of using the total volatility of

the jump-diffusion process, they use a smaller volatility rate.

In this paper we analyze the price difference between Black-Scholes and Merton mod-
els using the total volatility of the jump-diffusion process in the Black-Scholes formula.
We show that the stock prices at which the pricing “error” is zero are different from
those reported by Merton (1976a). Consequently, some options underpriced with the
Black-Scholes formula in Merton’s paper are in fact overpriced and vice versa. We also
show that the pricing error can be smaller and larger than what was previously reported.
Although the difference in pricing errors is very large for unreasonable parameter esti-

mates, we find that it is non negligible for reasonable ones.
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Table 1: Call option prices for different parameters of the jump-diffusion
process.

| | & M w2 FE() | ) [ F0F) ]
0.05 | 1.00 | -0.025 | 0.10 | 0.10062 || 5.9713 | 5.3396 | 6.0628 | 6.0711
E=0 0.50 | 0.10 | -0.250 | 0.10 | 0.10625 || 5.6979 | 5.3396 | 6.0628 | 6.1447
5.00 | 0.01 | -2.500 | 0.10 | 0.16250 || 5.4560 | 5.3396 | 6.0628 | 6.8168
0.05 | 1.00 | 0.070 | 0.10 | 0.10494 || 5.9647 | 5.3396 | 6.0628 | 6.1277
k=0.1 0.50 | 0.10 | -0.155 | 0.10 | 0.10239 | 5.6826 | 5.3396 | 6.0628 | 6.0944
5.00 | 0.01 | -2.405 | 0.10 | 0.15783 || 5.4573 | 5.3396 | 6.0628 | 6.7648
0.05 | 1.00 | 0.157 | 0.10 | 0.12475 | 6.1554 | 5.3396 | 6.0628 | 6.3778
k=02 0.50 | 0.10 | -0.068 | 0.10 | 0.10046 | 5.6758 | 5.3396 | 6.0628 | 6.0689
5.00 | 0.01 | -2.318 | 0.10 | 0.15372 || 5.4587 | 5.3396 | 6.0628 | 6.7186
0.05 | 1.00 | -0.130 | 0.10 | 0.11699 || 6.2055 | 5.3396 | 6.0628 | 6.2817
k=-0.1 ]0.50 | 0.10 | -0.355 | 0.10 | 0.11263 || 5.7234 | 5.3396 | 6.0628 | 6.2266
5.00 | 0.01 | -2.605 | 0.10 | 0.16788 || 5.4550 | 5.3396 | 6.0628 | 6.8759
0.05 | 1.00 | -0.248 | 0.10 | 0.16158 || 6.6872 | 5.3396 | 6.0628 | 6.8066
k=-0.2 | 0.50 | 0.10 | -0.473 | 0.10 | 0.12239 || 5.7603 | 5.3396 | 6.0628 | 6.3488
5.00 | 0.01 | -2.723 | 0.10 | 0.17416 || 5.4541 | 5.3396 | 6.0628 | 6.9440

This table replicates part of Table IV of Ball and Torous (1985). They assume that the
mean relative jump size of the stock (k) is zero. The other parameters of the model are
S(0) = 38,7 = 0.5, F = 35,02 = 0.05, and 7 = 0.10, where o is the volatility of the
diffusion process. The total volatility per unit of time of the jump-diffusion process is
denoted by v, whereas v, is the volatility used by Ball and Torous. F' represents the
Merton model price, and F¢ is the investor appraised option value using the Black-Scholes
formula.
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Table 2: Normalized stock price at which Black-Scholes and Merton option
prices are equal.

r
T 0.10 0.25 0.40 050 0.75 1.00

0.05 | 1.274 1.284 1.286 1.284 1.286 1.235
0.785 0.779 0.778 0.779 0.789 0.810
0.10 | 1.411 1.419 1417 1.411 1.381 1.324
0.709 0.705 0.706 0.709 0.724 0.756
0.20 | 1.661 1.667 1.661 1.651 1.601 1.511
0.602 0.600 0.602 0.606 0.625 0.662
0.30 | 1.914 1.920 1913 1.901 1.842 1.749
0.523 0.521 0.523 0.526 0.543 0.572

0.05|1.267 1.271 1.269 1.265 1.246 1.207
0.790 0.787 0.788 0.790 0.803 0.829
0.10 | 1.405 1.407 1.403 1.397 1.366 1.306
0.712 0.711 0.713 0.716 0.732 0.766
0.20 | 1.655 1.657 1.652 1.644 1.607 1.546
0.604 0.603 0.605 0.608 0.622 0.647
0.30 | 1.907 1.910 1.905 1.897 1.860 1.804
0.524 0.524 0.525 0.527 0.538 0.554

0.05]1.263 1.264 1.261 1.257 1.238 1.198
0.792 0.791 0.793 0.795 0.808 0.835
0.10 | 1.402 1.403 1.399 1.394 1.372 1.330
0.713 0.713 0.715 0.717 0.729 0.752
0.20 | 1.652 1.653 1.649 1.645 1.624 1.589
0.605 0.605 0.606 0.608 0.616 0.629
0.30 | 1.904 1.905 1.902 1.898 1.877 1.844
0.525 0.525 0.526 0.527 0.533 0.542

This table replicates Table I of Merton (1976a), using the total volatility of the jump-
diffusion process. A, I', and 7 represent measures of the number of jumps per year, the
variance of the process, and the maturity of the option, respectively.
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Table 4: Maximum percentage overestimate of option price using Black-
Scholes model: Normalized stock price and percentage error [(f — f.) /fe]-

T
7 010 025 040 050 075  1.00

0.05] 0804 0880 0800 0893 0012 1000

0.646 -3.613 -8.538 -12.736 -26.773 -54.887

0.10 | 0.853 0850 0.854 0850 088  1.000

0.367 -2.168 -5.335 -8.177 -18.069 -40.256

A=5 G530 0788 0787 0792 0800 0836  L000
0215 -1.308 -3.280 -5.073 -11.350 -24.991

030 ] 0.732 0732 0.733 0746 0.7%6  1.000

0163 -0.999 -2517 -3.895 -8.623 -17.241

0.05] 0.898 0897 0809 0903 002  1.000

0341 -2.008 -4.944 -7.597 -17.016 -39.325

0.10 | 0.856 0856 0.860 0865 0.800  1.000

0188 -1.144 -2.877 -4470 -10.212 -23.866

A=10 5300790 0790 0.705 0.800 0.828  L.000
0109 -0.670 -1.699 -2.643 -5.945 -11.597

030 ] 0731 0734 0.738 0743 0.768  0.854

0082 -0.507 -1.287 -2.002 -4.459 -7.647

0.05] 0.000 0900 0903 0907 0924  1.000

0175 -1.064 -2.680 -4.173 -9.641 -23.281

0.10 | 0.858 0858 0.861 0865 0.884  1.000

0.095 -0.58% -1494 -2.332 -5322 -10.949

A=20 55570791 0792 0791 0797 08312 0.854
0.055 -0.340 -0.864 -1.348 -3.032 -5.310

030 | 0.735 0736 0.733 0740 0.752  0.778

0.041 -0.255 -0.651 -1.015 -2.273  -4.002

This table replicates Table III of Merton (1976a), using the total volatility of the jump-
diffusion process.
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Table 5: Percentage underestimate [(f — f.) /f.] of option price using Black-
Scholes model at stock price equal to 0.5 of present value of exercise price.

T
7 [ 010 025 0.40 0.50 0.75 .00
0.05 | 63.463 426738 1056.523 1569.914 2057.016 4207.807
0.10 | 6360 36482 84757 123425 226.968  320.767
0.15| 1.721 9909  23.688 35467  70.380  103.661
A=5 1020| 0611 3546 8719 13437 20374  46.401
0.25| 0223 1291 3266 5207  12.905  22.651
0.30| 0058 0321 0863 1501 4915  10.535
0.05] 29.205 105346 499251  762.043 1558.273 2437.933
0.10 | 3247 19364  46.681  69.571 135197  202.073
0.15| 0889 5323 13132 20028  41.613  64.871
A=101090| 0317 1.909 4804 7478 16730  27.941
0.25| 0117 0703 1802 2866 6980  12.816
0.30| 0031 0187 0498 0833 2431 5337
0.05] 13.866 90940 235189 364929 785.266 1305.925
0.10| 1.640 9996 24706 37495  76.805 121.910
0.15| 0452 2762 6934  10.697  23.103  38.400
A=20090] 0161 099 2516 3920 8903  15.704
0.25| 0060 0366 0940 1486 3536  6.696
030| 0016 0100 0262 0426 1129  2.453

This table replicates Table IV of Merton (1976a), using the total volatility of the jump-
diffusion process.

20



0,6

0,5 \

0,4 1

Implied Volatility
o
w

0,2

0,1

0 T T T T T T T T T T
00 02 04 06 08 10 12 14 16 18 20
K/S

Figure 1: Implied Black-Scholes Volatility from Merton (1976b) call option
prices. The parameters of the model are 7 = 0.5, 0% = 0.05,7 = 0.10, # = —0.025, 6% =
0.05, and A = 1.
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Figure 2: Option price error when jumps are small and frequent. MVR stands
for Merton’s volatility rate. Stock and option prices are expressed in units of the present
value of the exercise price. X is the normalized stock price, f is the normalized Merton
(1976b) call option price, and f, is the normalized investor appraisal of the option value
when using the Black-Scholes formula. The parameters of the model are 7 = 0.05, 1" =
0.1 and A = 5.
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Figure 3: Option price error when jumps are large and infrequent.

stands for Merton’s volatility rate. Stock and option prices are expressed in units of the
present value of the exercise price. X is the normalized stock price, f is the normalized
Merton (1976b) call option price, and f, is the normalized investor appraisal of the
option value when using the Black-Scholes formula. The parameters of the model are

7=0.05T = 0.1 and A = 0.01.

23



Normalized Absolute Pricing Error

0
00 0.1 oO. 03 04 05 06 0.7 "’O:S. 09 10 11 1.‘.2.-«"].':'3 14 15 16 17 18 19

----- = T T T p——— T

-10

-15

Total volatility

-20

(f - fe) x 100

-25

-30

-35

-40

Normalized Relative Pricing Error

60%

40%

20%

0% T T

T T T T
0g 01 02 03 04 O

— T T T T T T T T T
5 :06 07 08 09 1.0 1.1 .',2.""'1-.3 14 15 16 17 18 19

-20%

Total volatility

(f - fe) I fe

-40%

-60% \

-80%

-100%

-120%

Figure 4: Option price error when jumps are very large and infrequent. MVR
stands for Merton’s volatility rate. Stock and option prices are expressed in units of the
present value of the exercise price. X is the normalized stock price, f is the normalized
Merton (1976b) call option price, and f, is the normalized investor appraisal of the
option value when using the Black-Scholes formula. The parameters of the model are
7=0.05,' =0.9 and A = 0.01.
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Figure 5: Option price error for actual parameter values. MVR stands for Mer-
ton’s volatility rate. Stock and option prices are expressed in units of the present value of
the exercise price. X is the normalized stock price, f is the normalized Merton (1976b)
call option price, and f. is the normalized investor appraisal of the option value when
using the Black-Scholes formula. The parameters of the model are 7 = 0.0492,T" = 0.367
and A = 1.808, and are obtained from Andersen and Andreasen (1999).
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