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On the Robustness of Least-Squares Monte Carlo (LSM)

for Pricing American Derivatives

Abstract

This paper analyses the robustness of Least-Squares Monte Carlo, a technique re-

cently proposed by Longstaff and Schwartz (2001) for pricing American options.

This method is based on least-squares regressions in which the explanatory vari-

ables are certain polynomial functions. We analyze the impact of different basis

functions on option prices. Numerical results for American put options provide

evidence that this approach is robust to the choice of polynomials. However,

contrary to the claim of Longstaff and Schwartz (2001), it is not clear how many

basis functions are required. For other derivatives, option prices are more affected

by the type and number of basis functions used.



1 Introduction

How much do you pay for a certain asset if you know its final pay-off but you

ignore when you will receive it? That is one of the main questions that academics

and practitioners interested in American derivatives try to answer. The difficulty

for answering this question is that we do not know when we will receive the reward

promised by the asset. Thus, there exists a possibility of early exercise. At each

exercise time before maturity, the optionholder must decide whether to exercise

or to wait. This decision depends on the comparison, at each date, between the

(known) immediate exercise value and the (unknown) continuation value.

Closed-form expressions for derivative prices exist in few cases. One example

is an European option written on a stock whose price was derived by Black

and Scholes (1973) and Merton (1973). Analytical expressions for the price of

American options have been found, but numerical methods such as trees, finite

difference schemes, quadrature routines or Monte Carlo simulation are usually

required.

The Monte Carlo approach simulates paths for asset prices. An estimation

of the option price is obtained by the discounted average of the option pay-

offs computed for each path. This technique is appropriate to price options

with complex features (path-dependence, multiple stochastic processes, random

volatility, jumps, ...).

This technique is well suited for pricing European options, but it has not been

widely applied to American derivatives. Recently, Longstaff and Schwartz (2001)

have developed an algorithm to estimate the continuation value by a least-squares

regression. This technique is known as Least-Squares Monte Carlo (LSM). These

authors regress the discounted future cash-flows against a set of (basis) functions

in the underlying asset prices. They claim that the type and number of basis

functions have little effect on option prices.

This paper analyzes the robustness of the LSM approach for pricing American
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derivatives. For a put option, we find that LSM is indeed robust to the choice of

the type, but not the number, of basis functions. For more complex derivatives,

we find that the number and the type of functions do affect option prices.

This article is organized as follows. Section 2 reviews numerical methods

for pricing American-style options. In Section 3, we briefly present the LSM

technique and we provide a numerical example. Section 4 describes the set of

basis functions used in this paper and we study the pricing of some American

derivatives. Finally, Section 5 concludes the paper.

2 Numerical Methods for Pricing American

Derivatives

Analytical solutions for the case of an American call option with discrete divi-

dends have been derived by Roll (1977), Geske (1979) and Whaley (1981). The

solution for the infinite horizon case is provided by McKean (1965). Recently,

Ait-Sahlia (1996) and Ait-Sahlia and Lai (1996, 2000) have obtained closed-form

expressions for the optimal exercise boundary.

Other analytical solutions have been obtained by the method of lines (see

Rektorys (1982)). Carr and Faguet (1996) discretize the time derivative in the

Black-Scholes PDE and then solve analytically the resulting sequence of ordinary

differential equations. In a similar way, Carr (1998) also discretizes the time

derivative and randomizes the expiration date of the American option.

Other authors obtain closed-form solutions for approximations to the original

pricing problem. See Johnson (1983), Geske and Johnson (1984), Barone-Adesi

and Whaley (1987), Bunch and Johnson (1992), Broadie and Detemple (1996),

Ho et al. (1997), and Ju and Zhong (1999), among others. Ait-Sahlia and Carr

(1997) and Ju (1998) compare some of these techniques.

Johnson (1983) presents an interpolation method based on regressing option

2



prices against lower and upper bounds. A similar technique can be found in

Broadie and Detemple (1996), who describe the lower bound (LBA) and the

average of lower and upper bound (LUBA) methods.

Geske and Johnson (1984) apply the Richardson extrapolation technique1 to

price compound options. Several modifications by Bunch and Johnson (1992)

and Hoet al. (1994, 1997) have been suggested.

In general, to price complex options, numerical techniques are required. Lat-

tice methods are based on the discretization of the risk-neutral processes followed

by the relevant variables. Then, backward induction in time is used to find the

option price.

The binomial model was introduced by Cox et al. (1979) and Rendleman and

Bartter (1979) and is based on the random walk approximation to the Brownian

motion. Generalizations of this model have been suggested by Breen (1991), who

proposes the “accelerated binomial method” with Richardson extrapolation to

reduce the number of steps, and by Broadie and Detemple (1996). In some cases,

trinomial trees, originally proposed by Parkinson (1977) and Boyle (1988), are

used to increase the accuracy.

An alternative technique is the “finite difference” method. After building a

grid of mesh points, an approximate solution of the PDE for the option price is

obtained by replacing the partial derivatives with finite differences. Depending

on how these differences are computed, we obtain the fully explicit2, fully implicit

or Crank-Nicolson method, respectively.3

For two or three dimensions, LOD (Locally One Dimensional) and ADI (Al-

1This technique has also been used to accelerate valuation methods by Breen (1991), Huang

et al. (1996), Carr and Faguet (1996), Carr (1998) and Ju (1998).
2It can be seen that the explicit method is equivalent to approximate the diffusion process

by a discrete trinomial tree. See Clewlow and Strickland (1998) for details.
3The first two methods were introduced by Schwartz (1977) and Brennan and Schwartz

(1977, 1978) while the Crank-Nicolson method was first used in option pricing by Courtadon

(1982).
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ternating Direction Implicit) methods are developed.4 For higher dimensions,

Monte Carlo simulation is required.

American options can also be priced without approximating the stochastic

process for the underlying asset or the partial differential equation for the option

price. This is the case of quadrature techniques, which are based on approximat-

ing the integral that gives the option price. Examples of this technique are the

trapezoidal and Simpson’s rules.

Some authors use the integral representation method. Kim (1990), Jacka

(1991), and Carr et al. (1992) decompose the price of an American put into

the price of an European put option plus the early exercise premium, that is

expressed as an integral.

Different approximations of this integral have been proposed. Huang et al.

(1996) approximate the integrand with step functions to decrease the number of

early exercise points. Ju (1998) recognizes that the premium does not depend

critically on the early exercise boundary and approximates this boundary with a

multipiece exponential function. Numerical results show that this approximation

together with the method in Broadie and Detemple (1996) and the randomization

technique by Carr (1998) are the most accurate methods for pricing American

options.

Recently, Bunch and Johnson (2000) have derived exact expressions for the

critical stock price function and the American put price in the perpetual and

finite cases. Finally, Ait-Sahlia and Lai (2000) propose two different solutions

based on a piecewise linear approximation of the early exercise boundary.

Monte Carlo simulation was introduced in finance by Boyle (1977). For a

recent survey see Boyle et al. (1997). As shown by Harrison and Kreps (1979) and

Harrison and Pliska (1981), the value of an option is the risk-neutral expectation

of its discounted future value. This expectation is estimated by computing the

4See Morton and Mayers (1998) for details.
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average of a large number of pay-offs.

Monte Carlo simulation is suitable for path-dependent options and can be

extended to price options with multiple stochastic processes, random volatility,

jumps,.... Its major disadvantage is that it is computationally intensive and ineffi-

cient. To mitigate this problem, variance reduction techniques, such as antithetic

variables and control variates, have been developed.

Tilley (1993) prices American options using this technique. At each exercise

date, he orders simulated paths by asset prices and bundles them into groups.

For each group, an optimal exercise decision is taken.

Barraquand and Martineau (1995) reduce the dimensionality of the valuation

problem grouping the simulated values into “bins”. The transition probabilities

between bins is determined by simulation and each bin is used as a decision unit

to price the option.

Broadie and Glasserman (1997a) obtain point estimates and error bounds for

American option prices. After showing that there are not unbiased estimates of

these prices, they develop two (biased) estimates that converge asymptotically to

the true price.

Broadie et al. (1997) and Raymar and Zwecher (1997) price American options

on the maximum of several assets improving the techniques presented by Broadie

and Glasserman (1997a) and Barraquand and Martineau (1995), respectively.

Ibañez and Zapatero (1998) suggest a general Monte Carlo simulation method

for computing the optimal exercise boundary as the fixed point of an algorithm.

To obtain this boundary, all the parameters but one are fixed.

Finally, non-parametric methods can also be used to price American options.

This is the case of neural networks that tries to recover an unknown pricing

function given historical data. Once the network has “learned” from the data,

it is applied to out of sample data to determine the unknown price. See, for

example, Hutchinson et al. (1994).
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3 The Least-Squares Monte Carlo Approach

The main problem for pricing American options is the existence of several exercise

dates. At each exercise time, the optionholder must decide whether to exercise

the option or to wait. This decision depends on the comparison between the

immediate exercise and the continuation values of the option.

Therefore, the optimal exercise decision relies on the estimation of the con-

tinuation value. Longstaff and Schwartz (2001) estimate it by a least-squares

regression jointly with the cross-sectional information provided by Monte Carlo

simulation. In this regression, they use a set of basis functions in the underlying

asset prices. The fitted values are taken as the expected continuation values.

Comparing these estimations with the immediate exercise values, they identify

the optimal exercise decision. This procedure is repeated recursively going back in

time. Discounting the obtained cash-flows to time zero, the price of the American

option is found.

More formally, they assume a finite time horizon, [0, T ], in which they define

a probability space,5 (Ω, IF, P ), and an equivalent martingale measure, Q. Let

C(ω, s; t, T ), ω ∈ Ω, s ∈ (t, T ] denote the path of option cash-flows, conditional
on (a) the option being exercised after t and (b) the optionholder following the

optimal stopping strategy at every time after t.

The American option is approximated by its Bermuda counterpart, assuming

a finite number of exercise dates 0 < t1 < t2 < . . . < tK = T . The continuation

value is, under no-arbitrage conditions, the risk-neutral expectation of the future

discounted cash flows C(ω, s; ti, T ):

F (ω; ti) = EQ

[
K∑

j=i+1

exp

(
−

∫ tj

ti

r(ω, s) ds

)
C(ω, tj; ti, T ) | IFti

]
, (1)

where r(ω, s) is the risk-free rate and IFti is the information set at time ti.

5This is a triple consisting of Ω, the set of all possible sample paths (ω), IF, the sigma-algebra

of events at time T and P , a probability measure defined on the elements of IF.
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The idea underlying the LSM algorithm is that this conditional expectation

can be approximated by a least-squares regression for each exercise date. At time

tK−1, it is assumed that F (ω; tK−1) can be expressed as a linear combination

of orthonormal basis functions (pj(X)) such as Laguerre, Hermite, Legendre or

Jacobi polynomials. That is

F (ω; tK−1) =

∞∑
j=0

ajpj(X), aj ∈ IR

which is approximated by

FM(ω; tK−1) =
M∑

j=0

ajpj(X), aj ∈ IR.

This procedure is repeated going back in time until the first exercise date.

3.1 A Numerical Example

To provide some intuition, Longstaff and Schwartz (2001) present a numerical

example. Here we include a different one that shows that, if we use the LSM

approach with few paths, an American option can have a lower price than its

European counterpart.

We price an American put option on a non-dividend stock. The strike price,E,

is 1.1 and there are three possible exercise dates. The continuously compounded

risk-free interest rate is 0.05 and the volatility of the stock return, σ, is 0.2.

We simulate6 eight paths of the underlying stock price as shown in the fol-

lowing table7

6Given that we are using a geometric Brownian motion, the simulation is exact and is

sufficient to simulate prices at exercise dates. For other stochastic processes, the time step

should be smaller.
7The symbol ’*’ denotes the in-the-money paths. Focusing on this type of paths improves

the efficiency of the LSM method.
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Path t = 0 t = 1 t = 2 t = 3 Pay-off at t = 3

1 1 0.917938 ∗ 1.272171 1.417021 0

2 1 1.133931 1.290983 1.669802 0

3 1 1.162833 0.917742 ∗ 1.228432 0

4 1 1.096706 ∗ 1.081163 ∗ 1.118280 0

5 1 1.056690 ∗ 0.871784 ∗ 0.818722 ∗ 0.281278

6 1 1.416442 1.672474 1.263264 0

7 1 0.937138 ∗ 0.945920 ∗ 0.861259 ∗ 0.238741

8 1 0.872576 ∗ 0.658605 ∗ 0.475270 ∗ 0.624730

The last column of this table shows the final pay-offs of an European option.

Discounting these values at time zero and averaging them, the price of this option

is 0.123162.

For an American option, the LSM approach maximizes its value at each exer-

cise date along in-the-money (ITM) paths. For each date, X denotes the under-

lying stock price and Y represents the discounted cash-flows received at future

dates if the option is not exercised.

At time two, there are five ITM paths (all but the first, the second and the

sixth ones) and the values of X and Y are as follows

Path Y X

1 — —

2 — —

3 e−0.05 × 0 0.917742

4 e−0.05 × 0 1.081163

5 e−0.05 × 0.281278 0.871784

6 — —

7 e−0.05 × 0.238741 0.945920

8 e−0.05 × 0.624730 0.658605
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To decide whether to exercise the option, we must estimate the continuation

value and compare it with the immediate exercise value, 1.1−X. The continuation

value is estimated by regressing Y on a constant, X and X2, which gives

E[Y | X] = 2.848474 − 4.6539 X + 1.871826 X2.

The exercise decision is shown in the following table

Path 1.1−X E[Y | X] Decision

1 — — —

2 — — —

3 0.182258 0.1539056 Exercise

4 0.018837 0.0048106 Exercise

5 0.228216 0.2138467 Exercise

6 — — —

7 0.154080 0.1210645 Exercise

8 0.441395 0.5952915 Wait

We exercise the option in all the ITM paths except the eighth one, in which

1.1−X < E[Y | X]. Therefore, assuming that the option is not exercised before
time two, the cash-flows to the optionholder are the following

Path t = 1 t = 2 t = 3

1 — 0 0

2 — 0 0

3 — 0.182258 0

4 — 0.018837 0

5 — 0.228216 0

6 — 0 0

7 — 0.154080 0

8 — 0 0.62473
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We repeat this procedure at time one, when we also have five ITM paths. To

compute the variable Y , we use the cash-flows to be received at time two or three

(but not in both dates) for each path. The values of X and Y are as shown next

Path Y X

1 e−0.05 × 0 0.917938

2 — —

3 — —

4 e−0.05 × 0.018837 1.096706

5 e−0.05 × 0.228216 1.056690

6 — —

7 e−0.05 × 0.154080 0.937138

8 (e−0.05)2 × 0.624730 0.872576

Estimating again Y on a constant and the first two powers of X, we obtain

E[Y | X] = 23.905695 − 47.1482 X + 23.23217 X2,

which leads us to the following exercise decision

Path 1.1−X E[Y | X] Decision

1 0.182062 0.202191 Wait

2 — — —

3 — — —

4 0.003294 0.1407488 Wait

5 0.043310 0.0255102 Exercise

6 — — —

7 0.162862 0.1244155 Exercise

8 0.227424 0.4539830 Wait

Consequently, the cash-flows of this American option at the three exercise

dates are the following
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Path t = 1 t = 2 t = 3

1 0 0 0

2 0 0 0

3 0 0.182258 0

4 0 0.018837 0

5 0.043310 0 0

6 0 0 0

7 0.162862 0 0

8 0 0 0.62473

Thus, at time one, we exercise the option in the fifth and seventh paths. At

time two, we exercise the option in the third and the fourth paths and, at time

three, a non-zero cash-flow is received in the eighth path.

All the cash-flows in the second and the sixth paths are null because they

are out-of-the money paths. For the first path, the cash-flows are also zero even

though, at time one, the option is ITM. This can be explained because the optimal

decision at this time was to wait.

Finally, discounting these cash-flows to the initial date and averaging them

over all paths, the price for the American option is 0.114473, a 7% smaller than the

European counterpart. Of course, this is a consequence of the reduced number of

simulated paths. Increasing the number of paths leads to American option prices

that are larger than European ones.

4 Numerical Results on the Robustness of LSM

It seems interesting to analyze what happens to the option price when we change

the number or type of basis functions. In this paper, we use the following poly-
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nomials with up to ten terms.8

Name fn(x)

Powers Wn(x)

Legendre Pn(x)

Laguerre Ln(x)

Hermite A Hn(x)

Hermite B Hen(x)

Chebyshev 1st kind A Tn(x)

Chebyshev 1st kind B Cn(x)

Chebyshev 1st kind C T ∗
n(x)

Chebyshev 2nd kind A Un(x)

Chebyshev 2nd kind B Sn(x)

where n ≥ 0 denotes the degree of the polynomial.

These polynomials can be expressed in three alternative ways:

1. Explicit expression

fn(x) = dn

N∑
m=0

cmgm(x),

where N takes different values for different polynomials as shown in Table

1.

2. Rodrigues’ formula

fn(x) =
1

an g(x)

∂n

∂xn
[ρ(x) (g(x))n]

3. Recurrence law

an+1 fn+1(x) = (an + bn x) fn(x)− an−1 fn−1(x)

8See Demidowitsch et al. (1980) for details on T ∗
n(x) and Abramowitz and Stegun (1972)

for the remaining ones.
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The coefficients and functions included in these expressions are shown in Ta-

bles 1, 2, and 3, respectively.

[ Insert Tables 1, 2, and 3 about here ]

From a theoretical point of view, it would be desirable to use an orthonormal

basis of functions on which to project continuation values. This means that

∫ b

a

fn(x) fm(x) dx =


 0 n �= m

1 n = m

The values for the limits of this integral vary with the polynomials. See Abramowitz

and Stegun (1972) for details. In most cases, the range of underlying prices (X)

is different from the interval [a, b] so that the basis functions will not be or-

thonormal. Consequently, we should increase the number of terms used in the

regressions.

4.1 Valuation of the Standard Put Option

The first derivative we price is an American put option on a non-dividend stock

with the following characteristics: σ = 0.2, r = 0.06, T = 1, S0 = E = 40. We

approximate this option assuming that there are 70 exercise dates.

The value of this option using the binomial method of Cox et al. (1979)

(with 1,000 steps) is 2.31928. The value of the corresponding European option,

using simulation, binomial trees, and the Black and Scholes (1973) formula, are

2.06193, 2.06560 and 2.06640, respectively.

To avoid numerical problems, we standardize the option dividing by the strike

price and we use double-precision variables. We also employ SVDFIT, a Numeri-

cal Recipes routine that performs linear least-squares fits using the singular value

decomposition technique.

Results for the LSM algorithm with different basis functions and number of

terms are shown in Table 4. We use 100,000 simulations, half of them with
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antithetic variables. Notice that this implies that we have to store (100,000 ×
70) matrices.

[ Insert Table 4 about here ]

For a given polynomial, we see that option values do not increase monoton-

ically with the number of terms. For up to five terms, option prices typically

increase. With more terms, option values can decrease and increase later. This

result illustrates the limitations of the convergence criterion derived from Propo-

sition 1 of Longstaff and Schwartz (2001).9 For example, if we use Tn(x) as basis

functions, this rule would suggest that five terms are enough to value the option.

In this case, the option price would be 2.30689. However, option values increase

again taking 7, 8 or 10 terms.

The method seems to be robust with respect to the type of polynomial used.

We see that, fixing the number of terms, we obtain similar option prices for

different basis functions.

Notice that the computed option prices are lower than the values obtained

with the binomial tree. This is not surprising since we are considering only

70 exercise dates. A more reasonable benchmark is the binomial price of the

Bermuda option, 2.31547. We use a binomial tree with 1050 steps in which the

option can be exercised every 15 steps. Interestingly, LSM seems to slightly

underprice the option.

4.2 Option on the maximum of five assets

We now analyze a Bermuda call option on the maximum of five uncorrelated

assets. The volatility of the asset returns is 0.2, the interest rate is 0.05, the

dividend yield is 0.1, the maturity of the option is three years, and there are

9This criterion indicates that, to price accurately the option, we should increase the number

of basis functions until the option price no longer increases.
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three exercise times per year. The strike price is 100 and the initial assets prices

are 100 for the five assets.

This option has been priced by Broadie and Glasserman (1997b), using the

stochastic mesh method. They find that the 90% confidence interval for the price

of this option is [26.101, 26.211].

Longstaff and Schwartz (2001) value this option using the LSM approach with

19 basis functions: a constant, five Hermite polynomials in the maximum of the

five assets, the second to the fifth maximums and their square values, the four

products of consecutive pairs of maximums, and the product of the five assets.

Using 50,000 paths, their option value is 26.182, which is within the interval given

by Broadie and Glasserman (1997b).

As before, we use different basis functions to price this option. In Table 5, we

show option prices obtained when the Hermite polynomial is replaced by others,

with up to ten terms. This means that we use between 14 and 24 basis functions.

We simulate 50,000 + 50,000 antithetic paths.

[ Insert Table 5 about here ]

Using less than two terms, we obtain values which are outside the interval

given by Broadie and Glasserman (1997b). We also obtain values outside this

interval using more than seven terms for the polynomials Pn(x), Hn(x), Tn(x)

and Un(x). In some cases, these prices are lower than 24. Option prices typically

increase with up to four or five terms. With more terms, these values can decrease

and increase again. As mentioned before, this finding makes it difficult to use the

convergence criterion of Longstaff and Schwartz (2001). For example, if we use

Ln(x) as basis functions, we would need five terms to price accurately the option.

However, the option value increases again with more than six terms.

A final remark is that using five Hermite polynomials, the option price is

26.187, which is very close to the price given by Longstaff and Schwartz (2001).
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Note that the value of the corresponding European option is 23.098, so that the

early exercise premium is higher than 3.

Now, we set the polynomials equal to Hen(x), and we change the remaining

basis functions. The results are shown in Table 6.

[ Insert Table 6 about here ]

The second column presents the prices obtained without including the squares

of the second to the fifth maximums. Dropping out those values has little impact

on the option price. As before, the option value increases monotonically only

with up to five terms. In the third column, we also leave out the products of

consecutive maximums. In this case, option prices are outside the interval except

when we use five terms. In the following column, we work with the polynomials

Hen(x), the second to the fifth maximums, and their squares. Now, all the option

prices are outside the interval. Finally, the fifth column shows the prices obtained

with the same basis functions as in Table 5 plus the third powers of the second

to the fifth maximums. Compared to the sixth column of Table 5, we find that

option prices are similar in both cases.

4.3 American-Bermuda-Asian option

Following Longstaff and Schwartz (2001), we now price a call option on the aver-

age of the stock price during a given time horizon. This option can be exercised

at any time after some initial period. It matures in two years and it cannot

be exercised during the first quarter. The average stock price is the continuous

arithmetic mean from three months before the valuation date to time t, where

0.25 ≤ t ≤ 2.

Table 7 presents the results for 50,000 simulations (25,000 plus 25,000 anti-

thetic) and 100 time steps per year. The third column replicates part of Table 3

in Longstaff and Schwartz (2001). To price the option, we use eight basis func-

tions: a constant, the first two Laguerre polynomials in the stock price, the first
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two Laguerre polynomials in the average stock price, and the cross products of

these Laguerre polynomials up to third degree.

[ Insert Table 7 about here ]

We obtain values slightly below those reported by LOngstaff and Schwartz

(2001). For example, when the initial average value of the stock, A, is 100 and

the underlying stock price, S, is 120, our option price is 23.60899 versus 23.775.

The fourth column shows the values computed with different basis functions.

We replace Laguerre polynomials with Hermite B polynomials (Hen(x)) of degree

five and their cross products up to third degree. We find that changing the type

and the degree of the polynomials affects option prices since we now undervalue

the option relative to the previous column.10

In Table 8, we analyze the sensitivity of the option price with respect to the

degree of the Hermite B polynomial.11 We choose an option (A = 110, S = 120)

and we use up to ten terms in both the underlying stock price and its average.

Now, the cross products are not considered.

[ Insert Table 8 about here ]

We see that the value of the option increases with the number of terms up

to degree six. Following the convergence criterion derived from Proposition 1 of

Longstaff and Schwartz (2001), to price the option, we would use only six terms.

However, the value of the option increases again with nine terms. Thus, it is not

clear how many terms are really needed.

Finally, we analyze the impact of cross products on the option price in Table

9. We value the previous option with Hermite B polynomials of degrees two and

three.

10When A = 100 and S = 120, the option price is 23.48875 versus 23.60899.
11We do not report the result for degree one because of numerical difficulties when pricing

the option.
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[ Insert Table 9 about here ]

In the second row of this table, we do not use cross products. Therefore, these

values are taken from Table 8. The third row shows the results using the same

cross products as in Longstaff and Schwartz (2001). Apparently, adding cross

products does not influence option prices. However, as we can see in the last row

of the table, using more cross products seems to affect the option value.12

5 Conclusions

Monte Carlo simulation is widely used for pricing European options. However,

its application for valuing American derivatives is not straightforward.

Recently, Longstaff and Schwartz (2001) have developed the Least-Squares

Monte Carlo (LSM) technique, that uses simple regressions to price American

options. At each exercise date, they estimate the continuation value of the option

regressing the expected cash-flows on basis functions of the underlying asset price.

This paper analyzes the robustness of the LSM approach relative to the type

and number of basis functions. We apply this algorithm to price an American put

option, a Bermuda call option on the maximum of five assets, and an American-

Bermuda-Asian option. We consider ten basis functions with up to ten terms.

Numerical results show that this technique is robust for the simplest (Amer-

ican put) case. For more sophisticated options, the robustness does not seem to

be guaranteed and the type and number of basis functions to be used is unclear.

12To compute these cross products, we use all the possible pairs of the basis functions em-

ployed in the second row. Thus, there are 11 and 22 functions for degrees two and three,

respectively.
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Table 1: Explicit expressions of the basis functions.

fn(x) N dn cm gm(x)

Wn(x) 0 1 1 xn

Pn(x) [n/2] 2−n (−1)m

 n

m





 2n− 2m

n


 xn−2m

Ln(x) n 1 (−1)m

m!


 n

n−m


 xm

Hn(x) [n/2] n! (−1)m 1
m! (n−2m)!

(2x)n−2m

Hen(x) [n/2] n! (−1)m 1
m! (n−2m)!

xn−2m

Tn(x) [n/2] n/2 (−1)m (n−m−1)!
m! (n−2m)!

(2x)n−2m

Cn(x) [n/2] n (−1)m (n−m−1)!
m! (n−2m)!

xn−2m

T ∗
n(x) [n/2] 2−n n (−1)m (n−m−1)!

m! (n−2m)!
(2x)n−2m

Un(x) [n/2] 1 (−1)m (n−m)!
m! (n−2m)!

(2x)n−2m

Sn(x) [n/2] 1 (−1)m (n−m)!
m! (n−2m)!

xn−2m

The basis functions are particular cases of the following expression

fn(x) = dn

N∑
m=0

cmgm(x),

where n ≥ 0 denotes the degree of the polynomial.
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Table 2: Expressions of the basis functions using Rodrigues’ formula.

fn(x) an ρ(x) g(x)

Wn(x)
(2n)!

n!
x2n 1

Pn(x) (−1)n 2n n! 1 1− x2

Ln(x) n! e−x x

Hn(x) (−1)n e−x2
1

Hen(x) (−1)n e−x2/2 1

Tn(x) (−1)n 2n Γ(n+ 1
2)√

π
(1− x2)−1/2 1− x2

Cn(x) (−1)n 2n Γ(n+ 1
2)√

π

(
1− x2

4

)−1/2

1− x2

4

T ∗
n(x) (−1)n 22n−1 Γ(n+ 1

2)√
π

(1− x2)−1/2 1− x2

Un(x)
(−1)n 2n+1 Γ(n+ 3

2 )
(n+1)

√
π

(1− x2)1/2 1− x2

Sn(x)
(−1)n 2n+1 Γ(n+ 3

2 )
(n+1)

√
π

(
1− x2

4

)1/2

1− x2

4

The basis functions are especial cases of Rodrigues’ formula which is given by

fn(x) =
1

an g(x)

∂n

∂xn
[ρ(x) (g(x))n],

where n ≥ 0 denotes the degree of the polynomial.
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Table 3: Recurrence law for the basis functions.

fn(x) an+1 an bn an−1 f0(x) f1(x)

Wn(x) 1 0 1 0 1 x

Pn(x) n+ 1 0 2n + 1 n 1 x

Ln(x) n+ 1 2n+ 1 −1 n 1 1− x

Hn(x) 1 0 2 2n 1 2x

Hen(x) 1 0 1 n 1 x

Tn(x) 1 0 2 1 1 x

Cn(x) 1 0 1 1 2 x

T ∗
n(x) 1 0 1 1/4 1 x

Un(x) 1 0 2 1 1 2x

Sn(x) 1 0 1 1 1 2x

The general expression for the recurrence law is given by

an+1 fn+1(x) = (an + bn x) fn(x)− an−1 fn−1(x),

where n ≥ 0 denotes the degree of the polynomial.
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Table 6: Effect of basis functions on the Bermuda call option on the

maximum of five assets.

Number of terms Case I Case II Case III Case IV

0 25.75969 25.66929 25.36842 25.76960

1 25.86988 25.76343 25.84218 25.88012

2 26.07051 26.03418 26.05393 26.10515

3 26.15420 26.06087 26.06920 26.18469

4 26.16086 26.08385 26.09032 26.19798

5 26.16341 26.10152 26.08691 26.20064

6 26.14974 26.08556 26.07915 26.18932

7 26.15517 26.09288 26.07881 26.19892

8 26.14555 26.09031 26.07253 26.18422

9 26.14921 26.08191 26.07572 26.17811

10 26.11754 26.08579 26.07383 26.18058

The characteristics of the option are: σ = 0.2 (for the five assets), r = 0.05,

the dividend yield is 0.1, T = 3 years, E = 100, there are three exercise times

per year, and the initial assets prices are 100 for the five assets. We use 100,000

(50,000 plus 50,000 antithetic) simulations. In Case I we use the following basis

functions: a constant, the second to the fifth maximums, the four products of

consecutive pairs of maximums, and the product of the five assets. Case II is Case

I without the products of consecutive maximums. Case III considers the second

to the fifth maximums and their squares. Finally, Case IV uses a constant, the

second to the fifth maximums, their squares, their third powers, the products of

consecutive pairs of maximums, and the product of the five assets. In all the

cases, we also use the polynomials Hen(x) with up to ten terms.
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Table 7: American-Bermuda-Asian option prices with Laguerre and

Hermite B polynomials.

A S Laguerre Hermite B

90 100 7.72344 7.64979

90 110 14.18221 14.13072

90 120 22.15082 22.04639

100 100 8.29836 8.23392

100 110 15.37693 15.31818

100 120 23.60899 23.48875

110 100 9.45722 9.41530

110 110 17.12380 17.03744

110 120 25.29639 25.20921

The characteristics of the option are: σ = 0.2, r = 0.06, T = 2, E = 100. The

initial value of the average and the underlying stock price are denoted by A and

S, respectively. The average stock price is the continuous arithmetic mean from

three months before the valuation date to time t, where 0.25 ≤ t ≤ 2. The option

cannot be exercised during the first quarter. We use 50,000 (25,000 plus 25,000

antithetic) simulations and approximate the American option considering 100

exercise dates per year. We use a constant, the first two Laguerre polynomials

in the stock price, the first two Laguerre polynomials in the average stock price,

and the cross products of these Laguerre polynomials up to third degree.
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Table 8: Sensitivity of the American-Bermuda-Asian option prices with

respect to the degree of Hermite B polynomials.

Degree Option Price

2 25.16948

3 25.17115

4 25.19076

5 25.21053

6 25.22129

7 25.15755

8 25.19111

9 25.21444

10 25.21348

The characteristics of the option are: σ = 0.2, r = 0.06, T = 2, E = 100. The

initial value of the average is A = 110 and the underlying stock price is S = 120.

The average stock price is the continuous arithmetic mean from three months

before the valuation date to time t, where 0.25 ≤ t ≤ 2. The option can only be

exercised after the first quarter. We use 50,000 (25,000 plus 25,000 antithetic)

simulations and approximate the American option considering 100 exercise dates

per year. We use Hermite B polynomials in the stock price and its average as

basis functions.
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Table 9: Sensitivity of the American-Bermuda-Asian option prices with

respect to cross products of Hermite B polynomials.

Degree 2 Degree 3

Case I 25.16948 25.17115

Case II 25.16996 25.17099

Case III 25.14129 25.26195

The characteristics of the option are: σ = 0.2, r = 0.06, T = 2, E = 100. The

initial value of the average is A = 110 and the underlying stock price is S = 120.

The average stock price is the continuous arithmetic mean from three months

before the valuation date to time t, where 0.25 ≤ t ≤ 2. The option can only be

exercised after the first quarter. We use 50,000 (25,000 plus 25,000 antithetic)

simulations and approximate the American option considering 100 exercise dates

per year. We use Hermite B polynomials and their cross products in the stock

price and its average as basis functions. In Case I, we do not use cross products.

Case II employs the same cross products as in Longstaff and Schwartz (2001). In

Case III, we use all the possible pairs of the basis functions employed in Case I.
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