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Abstract 
The common factor model assumes a linear relation between the observed variables and a set of
underlying latent traits. It also assumes that the linear coefficients, intercepts and slopes (factor
loadings), linking the observed variables to the latent traits are fixed coefficients (i.e., common for all
subjects). When the observed variables are subjects' direct responses to stimuli, such as their
responses to the items of a questionnaire, the assumption of common linear coefficients may be too
restrictive. This may occur, for instance if respondents to questionnaire items consistently use the
response scale idiosyncratically. To account for this phenomenon we partially relax the fixed
coefficients assumption by letting the intercepts in the factor model change across subjects while
keeping the factor loadings fixed. 
 
We show that, under suitable assumptions on this random component of the intercept, the covariance
structure implied by a model with p factors and random intercepts is equivalent to the covariance
structure model implied by a model with p + 1 factors model where one of the factors have common
loadings. 
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1.Introduction 
 One of the most widely used statistical models in the Social Sciences is without doubt 

the common factor model. In this model a set of observed variables is expressed as a linear 

function of a smaller set of unobserved variables (latent traits) plus some error. Furthermore, 

the model specifies that the linear coefficients are fixed. Often times, this model is applied to 

the responses of a population of subjects to a set of stimuli. The typical example is when we 

wish to measure some broadly defined construct by means of a questionnaire composed of 

items for which some graded response scale is provided. Likert (1932) showed that the simple 

scoring system of assigning consecutive integers to the graded responses could not be 

outperformed by more sophisticated procedures. It has become standard practice to use this 

scoring system and to denote this type of items Likert-type items.  

When the factor model is applied to Likert-type items, we are assuming that the 

relationship between the items and the underlying latent traits is linear. Also, because in this 

model the linear coefficients (intercepts and factor loadings) are fixed, we are in fact 

assuming that the expected relationship between a subject's latent trait and his/her 

responses to an item is the same for all respondents with a fixed level in those latent traits. 

The latter may be an unreasonable assumption as it is common to observe that some 

subjects consistently use only the extremes of the graded response scale, yet others use only 

the middle points of the scale, while others use the full range of the scale, and this 

idiosyncratic use of the response scale does not seem to be related to the subjects' level on 

the latent trait being measured. The purpose of this paper is to extend the common factor 

model to accommodate this phenomenon by adding a random component to the intercept 

thus treating the intercepts as a mixed effect rather than as a fixed effect.  

 The remaining of this paper is organized as follows. First, we shall review the 

common factor model with fixed coefficients. Next, we shall introduce our random intercept 

version of this model. We will show that by introducing suitable assumptions on this model, 

the random intercept factor model is equivalent to a factor model having an additional factor 

with common factor loadings which is orthogonal to all 'substantive' latent traits. Hence, this 

random intercept factor model can be fitted using a standard programs for covariance 

structure analysis. To illustrate our presentation we apply a random intercept factor model 

to the Life Orientation Test  (LOT: Scheier & Carver, 1985). 
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2. The common factor model 
 Suppose a set of n Likert-type items has been administered to a random sample of N 

respondents. For ease of exposition and without loss of generality, we shall assume that each 

of the Likert-type items consists of the same number of categories, k. We shall also assume 

that successive integers {0, 1, 2, ..., k –1} have been assigned to the subjects' responses. A p-

dimensional factor model for these data is given by 

 ij ij i j ijy eλ η′= + +γ  i = 1, ..., n;  j = 1, ..., N  (1) 

where γij denotes the intercept for item i and respondent j, λi denotes the vector of factor 

loadings for the same item, ηj denotes subject j's vector of factors, and eij denotes a residual. 

In the factor model it is further assumed that the intercept is common for all respondents 

 ij i=γ µ  (2) 

Thus, in this model the factors η and residuals e are random variables, whereas µi and λi are 

fixed constants common to all subjects.  

 It is convenient to express (1) and (2) in matrix form  

 γ Λη= + +y e  (3) 

 γ µ=  (4) 

Let the covariance matrix of the latent traits be denoted by Ψ and the covariance matrix of 

the residuals be denoted by Θ. The factor model further assumes that  

1) The mean of the factors in the population of respondents is zero. 

2) The mean of the residuals is zero. 

3) The residuals are uncorrelated with each other, so that Θ is a diagonal matrix. 

4) The residuals are uncorrelated with the factors. 

These assumptions, coupled with (3) and (4) imply the following well-known structure for 

the mean vector and covariance matrix of the observed variables 

 ( )yΣ θ ΛΨΛ Θ′= +  ( )yΣ θ ΛΨΛ Θ′= +  (5) 

where θ denotes a parameter vector containing the distinct elements of Λ, Ψ, and Θ.  

When no restrictions are imposed on µ the most popular approach to estimate the 
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parameter vector θ is by minimizing the discrepancy function 

 ( ) ( ) ( )( )1ln ln try yF nθ Σ θ Σ θ −= − + −S S  (6) 

where S denotes the sample covariance matrix (see Browne and Arminger, 1995). When the 

observed data is multivariate normal, (6) yields maximum likelihood estimates of  θ. 
However, when the observed data are responses to Likert-type items, it is unlikely that the 

distribution of the data is reasonably approximated by a multivariate normal distribution. If 

that is the case, then the normal theory standard errors and goodness of fit tests will be 

incorrect. With non-normal observations one can still obtain asymptotically correct standard 

errors and goodness of fit tests associated with (6) suitable to non-normal observations using 

results given by Arminger and Schoenberg (1989) and Satorra and Bentler (1994).  

 In any case, some restrictions on Λ and Ψ must be imposed to identify the model. 

Identification restrictions for restricted (a.k.a. confirmatory) models are given in Bollen 

(1989: pp. 238-251). When no prior knowledge is assumed, then an unrestricted factor model 

can be fitted (a.k.a. exploratory factor model) . The easiest way to identify an unrestricted 

model is to set Ψ = I and letting Λ be a low echelon matrix (McDonald, 1999: p. 181), fixing 

to zero 
( )1

2
p p −

 factor loadings in the upper right corner of Λ. The unrestricted solution 

may then be rotated to increase the interpretation of the unrestricted solution. 

The common factor model with a random intercept 
 We shall now relax the assumption of an intercept common to all respondents by 

letting the intercept change from respondent to respondent. Instead of (2) we shall assume 

 ij i j= +γ µ ζ . (7) 

That is now the intercept γij consists of a fixed part µi that changes from item to item, and a 

random part ζj that changes from respondent to respondent. In matrix form we write (7) as  

 γ µ= + 1ζ  (8) 

In this model, we let the variance of the random component of the intercept be ϕ and in 

addition to assumptions 1) to 4) above we assume that 

5) The mean of the random component ζ of the intercept is zero in the population of 

respondents.  

6) The random component ζ of the intercept is uncorrelated with the factors and with 
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the residuals. 

Assumption 5) is imposed to identify the model, whereas assumption 6) reflects our 

observation that subjects' consistent patterns of usage of the response scale (for example, the 

use of the extreme values only, or of the middle values only) seem to be unrelated to the 

level of the respondents on the latent traits being measured.  

In Appendix 1, we show that the model defined by (3) and (8), coupled with 

assumptions 1) through 6), implies the following structure for the mean vector and 

covariance matrix of the observed variables 

 yµ µ=  ( )yΣ θ ΛΨΛ Θ′ ′= + +11ϕ  (9) 

where θ denotes a parameter vector containing ϕ and the distinct elements of Λ, Ψ, and Θ. 

This model is identified by the usual rules for the identification of the factor model. 

Furthermore, when no restrictions are imposed on µ, (9) can be estimated by minimizing a 

covariance structure discrepancy function such as (6) just like the common factor model.  

To estimate (9) more easily using conventional software for covariance structure 

analysis, it is convenient to reparameterize the random intercept model as a common factor 

model  

 * *γ Λ η= + +y e  γ µ=  (10) 

where ( )*η η ′= ζ  and with 

 ( )*Λ Λ= 1ϕ  *
1 0

Cov
0

η Ψ
   =        

 (11) 

or alternatively, with 

 ( )*Λ Λ= 1  *
0

Cov
0

ϕ
η Ψ

   =        
 (12) 

In Appendix 1 we show that the common factor model (10) with (11) or (12) also 

imply the mean and covariance structure (9). As a consequence, a common factor model with 

p latent traits and a random component in its intercept with Assumptions 5) and 6) can not 

be empirically distinguished from a common factor model with p + 1 latent traits whose first 

latent trait has a common factor loading and it is uncorrelated with all remaining p latent 
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traits. In other words, if one finds the mean and covariance structure (9) to be a reasonable 

model for the observed data, the interpretation of the first latent trait as a random intercept 

or as a substantive latent trait must be made exclusively on substantive, not statistical, 

grounds. The random intercept factor model with assumptions 1) through 6) imply (9), but 

the converse is not true. This is of course true for any mean and covariance structure model 

(see Browne, 1982). 

Most often, questionnaires consist of positively worded and negatively worded items 

where one of these two sets of items is inversely coded prior to analyzing the data. This is to 

avoid aquiescence effects on the respondents. The random intercept factor model is not 

invariant under such transformation and in Appendix 2 we show how to fit a random 

intercept factor model when a subset of the items has been inversely coded prior to the 

analysis. 

 

3. An example: Modeling the LOT 
 The Life Orientation Test (LOT: Scheier & Carver, 1985), is a eight item 

questionnaire designed to measure optimism and pessimism. The response scale for the items 

is graded, consisting of five points. Four of the items are positively worded and are scored 

from 0 to 4, while the remaining four items are negatively worded and are coded from 4 to 0. 

The LOT was designed to measure a single dimension. However, several factor analytic 

studies  (e.g., Scheier & Carver, 1985; Marshall, Wortman, Kusulas & Hervig, 1992; Chang, 

D'Zurilla & Maydeu-Olivares, 1994; Chang & McBride-Chang, 1996; Robinson, Kim, 

MacCallum & Kiecolt-Glaser, 1997) have revealed that a one factor model does not fit well 

this questionnaire. Instead, they found that a two factor model in which all positively 

worded items load on one dimension and all negatively worded items load on another 

dimension and both dimensions were correlated fitted well these data. However, we believe 

that it is hard to justify theoretically that optimism and pessimism are two distinct traits. 

Obviously, one may be optimistic about the outcome of a situation, and pessimistic about 

the outcome of another situation. But across situations (and the LOT measures generalized 

outcome expectancies) it is not clear how one can be both optimistic and pessimistic. 

Here, we shall re-analyze Chang et al.'s (1994) data fitting the following factor 

models:  

(A) a one dimensional model,  

(B) an unrestricted two-dimensional model,  

(C) a restricted two-dimensional model in which the positively worded items load on 
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one dimension, the negatively worded items in another dimension and both 

dimensions are correlated, and  

(D) a random intercept one factor model.  

Note that (A) is a special case of (B), (C) and (D). Also, (C) and (D) are special 

cases of (B). Thus, can use tests for nested models to compare these pairs of models. We can 

not use a nested test to compare (C) and (C) as these models are not nested. 

All models were estimated using LISREL 8.51 (Jöreskog & Sörbom, 2001) using the 

fitting function (6) with standard errors and a goodness of fit test asymptotically robust to 

non-normality. In Table 1, we give the item means, standard deviations and correlations. 

Positive and negatively worded items correlate negatively as the data was not recoded prior 

to analysis.  

------------------------------------ 

Insert Tables 1 to 2 about here 

------------------------------------ 

Goodness of fit tests are given in Table 2. The Satorra-Bentler (1994) scaled test 

statistics shown in this table suggest that the best model for this data is (C) a restricted two 

factor model. Nested tests (Satorra & Bentler, 2001) reveal that an unrestricted two-factor 

model does not fit better than this restricted model. No nested tests for the one factor model 

are presented as this model fits very poorly. The random intercept one factor model 

marginally fits this data and it is outperformed by an unrestricted two-factor model.  

The fit of all these models is greatly improved when item 11 is removed from the 

LOT. Item 11 of the LOT, "I'm a believer in the idea that 'every cloud has a silver lining'", is 

a saying, the only saying in the inventory and this introduces a distortion in the subjects' 

responses. This can be seen in Table 3. Again, the one factor model fits very poorly, but now 

not only the unrestricted and restricted two-factor models fit these data well, but also does 

the one factor random intercept model. In fact, nested tests shown in this table reveal that 

the unrestricted two-factor model does not outperform neither the two-factor model nor the 

one factor random intercept model.  

In Table 4 we provide the factor loadings for all the models considered when item 11 

is removed from the LOT. We see in this table that the loadings for the one factor random 

intercept model are all large. Also, the estimate of the variance of the random component of 

the intercept is 0.13, rather small relative to the variance of the factor which was set to 1. 

However, the value of the variance of the random component of the intercept is rather large 

relative to its standard error, 0.01, and setting this variance equal to zero, which is 

equivalent to specifying a one factor model results in a very poorly fitting model.  
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In sum, we have shown that by introducing a random component in the threshold of 

a one factor model we do not reject Scheier and Carver's (1985) original hypothesis that 

optimism is indeed a one-dimensional construct. We find our solution more parsimonious 

than hypothesizing a two-dimensional factor model (e.g. Chang et al., 1994) or than fitting a 

one dimensional model with correlated errors (e.g., Scheier & Carver, 1985).  

 

4. Discussion and conclusions 
 We have suggested a new covariance structure that applied researchers may wish to 

consider when fitting the factor model to questionnaire items. This covariance structure may 

be interpreted as arising from a factor model with a random component in its intercept. This 

model is obviously linked to the old literature on difficulty factors. A good review of this 

literature is given in McDonald and Ahlawat (1974; see also McDonald, 1999). This 

literature is concerned about needing additional dimensions using the common factor model 

that what could be expected from substantive theory. We have shown here that if indeed one 

is willing to assume that respondents to questionnaire items use the response scale 

idiosyncratically, and thus a random component needs to be incorporated into the intercept 

of the model, then an additional dimension will appear when fitting the data.  
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Table 1 

Means, standard deviations and correlations for the LOT data 

 

 

 

 

 Corr. item 1 item 4 item 5 item 11 item 3 item 8 item 9 item 12 

item 1  1.00        

item 4 0.51 1.00       

item 5  0.44 0.53 1.00      

item 11  0.25 0.34 0.22 1.00     

item 3  -0.16 -0.22 -0.26 -0.11 1.00    

item 8 -0.28 -0.38 -0.33 -0.19 0.50 1.00   

item 9 -0.24 -0.29 -0.30 -0.22 0.51 0.70 1.00  

item 12  -0.22 -0.35 -0.30 -0.26 0.44 0.54 0.52 1.00 

Mean 2.24 2.40 2.56 2.34 1.85 1.39 1.32 1.40 

Std 1.00 0.99 0.99 0.99 1.05 1.03 1.00 1.07 

 

 

 

 

 

 

Notes: N = 389 
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Table 2 

Goodness of fit tests for the LOT data 

 

 

Absolute goodness of fit tests 

Label Model ˆNF  Ŝ
T  df p 

A One factor model 217.40 211.46 20 <0.01 

B Unrestricted two-factor model 17.51 14.36 13 0.35 

C Restricted two-factor model 28.66 22.20 19 0.27 

D Random intercept one factor model 43.31 34.29 19 0.02 

 

 

Nested goodness of fit tests 

Comparison 
d̂ifT  df p 

C vs. B 7.93 5 0.16 

D vs. B 19.36 5 <0.01 

 

 

 

Notes: ˆNF  = minimum of the fitting function times sample size, 
Ŝ

T  = Satorra-Bentler's 

(1994) scaled test statistic, d̂ifT  = Satorra-Bentler's (2001) scaled test statistic for nested 

tests, p = p-value associated with Satorra-Bentler's statistic.  
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Table 3 

Goodness of fit tests for the LOT data after removing item 11 

 

 

Absolute goodness of fit tests 

Label Model ˆNF  Ŝ
T  df p 

A One factor model 185.78 161.05 14 <0.01 

B Unrestricted two-factor model 8.31 6.40 8 0.60 

C Restricted two-factor model 16.99 12.63 13 0.48 

D Random intercept one factor model 19.63 15.52 13 0.13 

 

 

Nested goodness of fit tests 

Comparison 
d̂ifT  df p 

C vs. B 6.11 5 0.30 

D vs. B 9.35 5 0.10 

 

 

 

Notes: ˆNF  = minimum of the fitting function times sample size, 
Ŝ

T  = Satorra-Bentler's 

(1994) scaled test statistic, d̂ifT  = Satorra-Bentler's (2001) scaled test statistic for nested 

tests, p = p-value associated with Satorra-Bentler's statistic. 
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Table 4 

Factor loadings for the LOT data after removing item 11 

 

 

 

 one factor 

model 

unrestricted two-

factor model 

restricted two- 

factor model 

one factor 

random 

intercept 

 λ λ1 λ2 λ1 λ2 λ 

item 1  0.38 

(0.06) 

0.65 

(0.05) 

0 

 

0.64 

(0.05) 

0 

 

0.54 

(0.05) 

item 4 0.48 

(0.06) 

0.80 

(0.05) 

-0.03 

(0.08) 

0.74 

(0.05) 

0 

 

0.66 

(0.05) 

item 5  0.46 

(0.06) 

0.66 

(0.06) 

-0.08 

(0.07) 

0.65 

(0.05) 

0 

 

0.61 

(0.05) 

item 3  -0.64 

(0.06) 

-0.28 

(0.08) 

0.59 

(0.06) 

0 

 

0.65 

(0.06) 

-0.56 

(0.06) 

item 8 -0.86 

(0.04) 

-0.45 

(0.08) 

0.74 

(0.06) 

0 

 

0.88 

(0.05) 

-0.79 

(0.05) 

item 9 -0.79 

(0.05) 

-0.35 

(0.08) 

0.76 

(0.05) 

0 

 

0.82 

(0.05) 

-0.71 

(0.05) 

item 12  -0.70 

(0.06) 

-0.41 

(0.08) 

0.56 

(0.07) 

0 

 

0.70 

(0.06) 

-0.65 

(0.06) 

 

 

 

 

Notes: N = 389; Standard errors for estimated parameters in parentheses. The correlation 

between the factors in the restricted two factor model was -0.53 (SE = 0.06). The variance of 

the random intercept was 0.13 (SE = 0.01). 
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Appendix 1 

Mean and covariance structure implied by the random intercept factor model 

 

 Let CovΨ ηη ′=   , CovΘ  ′=  ee  and Cov  ′=  ϕ ζζ  (a scalar). We can re-write 

assumptions 1) to 6) as: 1) [ ]E η = 0 , 2) [ ]E =e 0 , 3) Θ diagonal,  4) Cov η ′ = e 0 , 5) 

[ ]E 0=ζ , 6) Cov η ′ =  0ζ  and Cov  ′ = e 0ζ . 

Now, putting together (3) and (8) we have µ Λη= + + +y 1 eζ . Then, the mean 

structure for y implied by the random intercept factor model is 

 [ ] [ ] [ ] [ ]E E E Eµ Λ η µ= + + + =y 1 eζ . 

To obtain the covariance structure implied by this model, we note that by assumptions 1) 

through 6), 

 Cov Cov Cov CovΛ ηη Λ ΛΨΛ Θ       ′ ′ ′ ′ ′ ′ ′ ′= + + = + +       yy 1 1 ee 11ζζ ϕ  

 We shall now show that the factor model (10) with (11) or (12) implies the mean and 

covariance structure (9). We first note that by assumptions 1) through 4), 

[ ]* *E ,Cov ,E ,Covη η Θ     ′ ′= = = =        0 e 0 e 0 ee . Thus, [ ] [ ]* *E E Eµ Λ η µ = + + =  y e . As 

for the covariance matrix implied by (10) we have  * * * *Cov Cov CovΛ η η Λ
 ′ ′   ′ ′= +      

yy ee ,  

which using (11) or (12) simplifies to the covariance structure given in (9). 
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Appendix 2 

Effect of inverse coding a subset of items onto the random intercept factor model 

 

Let y denote the observed variables prior to recoding, and z denote the recoded 

variables. We shall partition z into z1 and z2 where z1 denotes the set of items that are not 

recoded, 1 1=z y , and z2 denote the set of items that are inversely coded, ( )2 21k= − −z 1 y .  

The mean and covariance structure under the random intercept factor model for the original 

variables are yµ µ=  and yΣ ΛΨΛ Θ′= + , where we partition µ and Λ according to the 

partitioning of y as 
1

2

µ
µ µ

  =    
 and 

1

2

Λ
Λ Λ

  =     

1

1
, and Ψ is given by (12).  

Now, the inverse coding transformation is 

 
1 1

2 2( 1)k

             = +        −−          

0z I 0 y
z y0 I1

. 

Thus mean and covariance structure under the random intercept factor model for the 

recoded variables are *
zµ µ=  and * *

zΣ Λ ΨΛ Θ′= + , where  

 
1*

2( 1)k

µ
µ µ

  =  − −  1  
1*

2

Λ
Λ Λ

  =  − −   

1

1
. 
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