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Abstract 
We show that when the thresholds and the polychoric correlation are estimated in
two stages, neither Pearson's X² nor the likelihood ratio G²  goodness of fit test
statistics are asymptotically chi-square. We propose a new test statistic, Mn, that is
asymptotically chi-square in this situation. Mn, may have a wide range of
applications beyond the one considered here as it is asymptotically chi-square for a
broad class of consistent and asymptotically normal estimators. Mn equals X² with an
adjustment to take into account that the estimator is not asymptotically efficient.
Also, Mn  ≤ X² where Mn = X²  in the case of the one-stage maximum likelihood
estimator. 
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1. Introduction 
 Consider a bivariate standard normal density categorized according to   

(I - 1) and (J - 1) thresholds, respectively. Within a maximum likelihood 

framework, Olsson (1979) considered one and two-stage approaches to estimate 

the q = (I - 1)  + (J - 1) + 1 parameters of this model from the observed I × J 

contingency table. In the one-stage approach all parameters are estimated 

simultaneously. In the two-stage approach, the thresholds are estimated 

separately from each univariate marginal, then the polychoric correlation is 

estimated from the bivariate table using the thresholds estimated in the first 

stage. 

 Of course, after estimating the parameters one must test the model 

(Muthén, 1993). To this end, one may employ the likelihood ratio statistic G2 or 

Pearson's X2 test statistic. From standard theory (e.g, Agresti, 1990), when the 

one-stage approach is employed both statistics are asymptotically distributed as 

a chi-square with r = IJ - q - 1 = IJ - I - J degrees of freedom. However, the 

distribution of G2 and X2 when the two-stage approach is employed remains to 

be investigated. Yet, ever since Olsson (1979) concluded that very similar results 

are obtained with the computationally simpler two-stage approach, this  

approach has become the standard procedure for estimating this model. As such, 

it is the procedure implemented in computer programs such as PRELIS/LISREL 

(Jöreskog & Sörbom, 1993) and MPLUS (Muthén & Muthén, 1998). To assess 

the goodness of fit of the moel, G2 is used in PRELIS/LISREL (Jöreskog, 2001, 

July 26, personal communication). No goodness of fit test is currently 

implemented in MPLUS. The purpose of this paper is to investigate the 

asymptotic distribution of G2 and X2 when the two-stage estimator is employed. 

 

2. Asymptotic distribution of parameter estimates 
Consider a I × J contingency table. Let  

( )12 11 1 1 1, , , , , , , , , ,J i iJ I IJ
′= π π π π π ππ  denote its IJ vector of probabilities 

and p12 its associated vector of sample proportions. Furthermore, let 

( )1 1, , , ,i I
′= π π ππ  and ( )2 1, , , ,j J

′= π π ππ  denote the vectors of 

univariate marginal probabilities, and p1 and p2 the vectors of its associated 

sample proportions.  

We note that,  

 1 1 12= Tπ π   2 2 12= Tπ π , (1) 
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for certain (implicitly defined) matrices T1 and T2. For instance, for I = 2 and   

J = 3, 

 
3 3

1

3 3

 ′ ′   =   ′ ′   

1 0
T

0 1
, ( )2 3 3=T I I , 

where 13 and 03 denote three-dimensional column vectors of 1's and 0's 

respectively.  

Now, assume the following model for πij,  

 ( )
22

1 21 1

* *
2 12 12

ji

i j

ij d
− −

= ∫ ∫ z z
ττ

τ τ

π φ  (2) 

where 
0 01 2 1 2, , ,

I J
= −∞ = −∞ =∞ =∞τ τ τ τ  and  φn(•) denotes a n-variate 

standard normal density function. Thus, *
12z  has mean zero and correlation 

matrix 
1

1

      

ρ
ρ . In particular,  

 ( )
2

1 1

* *
1 1 1

i

i

i z dz
−

= ∫
τ

τ

π φ  ( )
2

2 1

* *
1 2 2

j

j

j z dz
−

= ∫
τ

τ

π φ  (3) 

 In the sequel, let ( )1 2, ′=τ τ τ , where τ1 and τ2 denote the (I – 1) and   

(J – 1) dimensional vectors of thresholds implied by the model. Finally, let 

( ), ′= ρκ τ .  We now provide the asymptotic distribution of the one and two-

stage parameter estimates using standard results for maximum likelihood 

estimators for multinomial models. Agresti (1990) is a good source for the 

relevant theory.  

Let π and p be C-dimensional vectors of multinomial probabilities and 

sample proportions, respectively, and let N denote sample size. Consider a 

parametric structure for π, π(ϑ), with Jacobian matrix ∂=
′∂

π∆
ϑ

, and suppose 

we estimate ϑ by maximizing  

 ( ) ( )
1

ln
C

c c
c

L N p
=

= ∑ πϑ ϑ .  (4) 

Then, under typical regularity conditions, it follows that 

 ( ) ( ),dN N− →p 0π Γ  ′= −DΓ ππ  (5) 
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 ( ) ( )ˆ aN N− = −B pϑ ϑ π  (6) 

 ( ) ( )( )11ˆ ,dN N
−−′− → 0 Dϑ ϑ ∆ ∆  (7) 

where ( )Diag=D π , ( ) 11 1−− −′ ′=B D D∆ ∆ ∆ , d→  denotes convergence in 

distribution, and a=  denotes asymptotic equality. 

 

2.1 One-stage estimation 

 Akin to (5) we write, ( ) ( )12 12 ,dN N− →p 0π Γ , where 12 12 12
′= −DΓ π π  

and ( )12 12Diag=D π . Then, when all the parameters are estimated 

simultaneously by maximizing ( ) ( )12
1 1

, , ln , ,
I J

i j ij ij i j
i j

L N p
= =

= ∑∑ρ π ρτ τ τ τ , by a 

direct application of (7) 

 ( ) ( )( )11
12ˆ ,dN N

−−′− → 0 Dκ κ ∆ ∆  (8) 

where 12 12 12
 ∂ ∂ ∂  = =   ′ ′∂ ∂ ∂ ρ

π π π∆
κ τ

 and all necessary derivatives can be found in 

Olsson (1979). 

 

2.2 Two-stage estimation 

Consider now the following sequential estimator for κ (Olsson, 1979): 

First stage: Estimate the thresholds for each variable separately by maximizing 

 ( ) ( )1 1
1

ln
I

i i i
i

L N p
=

= ∑ πτ τ  ( ) ( )2 2
1

ln
J

j j j
j

L N p
=

= ∑ πτ τ  (9) 

Second stage: Estimate the polychoric correlation by maximizing 

 ( ) ( )12
1 1

ˆ ˆ, ln ,
I J

ij ij
i j

L N p
= =

= ∑∑ρ π ρτ τ  (10) 

 We shall now provide an alternative derivation of Olsson's results for this 

estimator closely following Jöreskog's (1994). We first notice that ˆ ˆ and i jτ τ  are 

maximum likelihood estimates, as (9) is the kernel of the log-likelihood function 

for estimating the thresholds from the univariate marginals of the contingency 

table. Similarly, (10) is the kernel of the log-likelihood function for estimating 

the polychoric correlation from the bivariate contingency table given the 

estimated thresholds. That is, ρ̂  is a pseudo-maximum likelihood estimate in the 
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terminology of Gong and Samaniego (1981).  

 To obtain the asymptotic distribution of the two-stage estimates we first 

apply (6) to the first stage estimates to obtain 

 ( ) ( )1 1 11 1 1ˆ aN N− = −B pτ τ π  ( ) ( )2 2 12 2 2ˆ aN N− = −B pτ τ π
 (11) 

where ( ) 11 1
11 11 1 11 11 1

−− −′ ′=B D D∆ ∆ ∆ , ( )1 1Diag=D π , 1
11

∂=
′∂

π∆
τ

, and so on. These 

derivatives can also be found in Olsson (1979). Now, letting 
11 1

1
12 2

  =     

B T
B

B T
, by 

(11) and (1) we get 

 ( ) ( )1 12 12ˆ aN N− = −B pτ τ π . (12) 

Similarly, a direct application of (6) to the second stage estimates yields 

 ( ) ( )( )22 12 12ˆ ˆ,aN N− = −B pρ ρ ρπ τ  (13) 

where ( ) 11 1
22 22 12 22 22 12

−− −′ ′=B D D∆ ∆ ∆ ,  and 12
22

∂=
∂ρ
π∆ . Note that B22 and ∆22 are 

a row and a column vector, respectively, despite the notation. Now, we need the 

asymptotic distribution of ( )( )12 12 ˆ,N −p ρπ τ  to proceed. In Appendix 1, we 

show that  

 ( )( ) ( ) ( )12 12 21 1 12 12ˆ, aN N− = − −p I B pρπ τ ∆ π  (14) 

where 12
21

∂=
′∂

π∆
τ

. Putting together (13) and (14) we obtain 

 ( ) ( ) ( )22 21 1 12 12ˆ aN N− = − −B I B pρ ρ ∆ π . (15) 

Finally, putting together (12) and (15) we obtain 

 ( ) ( )12 12ˆ aN N− = −G pκ κ π  
( )

1

22 21 1

  =   −  

B
G

B I B∆
. (16) 

and since as shown in the Appendix, 

 12 =G 0π , (17) 

 ( ) ( )12ˆ ,dN N ′− → 0 GD Gκ κ  (18) 
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where G and D12 are to be evaluated at the true population values.  

 

3. Goodness of fit testing 
We shall first obtain the asymptotic distribution of the unstandardized 

residuals ( )( )12 12 ˆˆ :N N= −e p π κ  when κ̂  are two- stage parameter estimates. 

In the Appendix it is shown that 

 ( ) ( )12 12ˆ aN N= − −e I G p∆ π  (19) 

where ( )12
21 22

∂= =
′∂

π∆ ∆ ∆
κ

. Thus, by (19) and (17),  

 ( )ˆ ,dN N→e 0 Ω  ( ) ( )′= − −I G I GΩ ∆ Γ ∆ . (20)  

We wish to investigate the asymptotic distribution of Pearson's X2 

statistic, and of and the likelihood ratio statistic G2, 

 
( )( )
( )

2

2 1
12

1 1

ˆ ˆˆ ˆ
ˆ

I J
ij ij

i j ij

p
X N N −

= =

−
′= =∑∑ e D e

π
π

κ
κ

  (21) 

 
( )

2

1 1

ln
ˆ

I J
ij

ij
i j ij

p
G N p

= =

= ∑∑ π κ
,  (22) 

where ( )( )12 12
ˆ ˆDiag=D π κ , and by convention when pij = 0, 

( )
ln 0

ˆ
ij

ij
ij

p
p =

π κ
.  

From standard theory (e.g., Agresti, 1990), when the model parameters 

are estimated simultaneously, 2 2 2a d
IJ I JG X − −= →χ . When they are estimated in 

two stages, it also holds that 2 2aG X=  (see Agresti, 1990: p. 434). Therefore, we 

only consider here the asymptotic distribution of X2. Now, again using standard 

results (Agresti, 1990: p. 432), 2 1 1
12 12

ˆˆ ˆ ˆ ˆaX N N− −′ ′= =e D e e D e . A necessary and 

sufficient condition for X2 to be asymptotically chi-square distributed is (e.g., 

Schott, 1997: Theorem 9.10) 

 1 1 1
12 12 12
− − −=D D DΩ Ω Ω Ω Ω  (23) 

In the Appendix we show that when the two-stage estimator is employed 

 ( ) ( )( )( ) ( )( )21 1
12 12
− −= − − − − ≠ = − − −D I K I JK I J C D I K I J CΩ Ω  (24) 

where =K G∆ , 1
12 12

−′=J D K D  and 1
12 12 12

−′=C Dπ π . Thus, (23) is not satisfied. 

Neither X2 nor G2 are asymptotically chi-squared. Rather, these statistics 
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converge in distribution to a mixture of r = IJ - I - J independent chi-square 

variables with one degree of freedom (Box, 1954: Theorem 2.1). Thus, an 

alternative test statistic must be sought that it is asymptotically chi-square 

under more general conditions than X2 and G2 to test the goodness of fit of the 

model when the two-stage estimator is employed.  

Let ϑ  be a consistent estimator satisfying  

 ( ) ( )aN N− = −G pϑ ϑ π  (25) 

for some q × C matrix G satisfying 

 =G I∆ . (26) 

Now, let ( )( )= −e p π ϑ  and consider the test statistic 

 nM N ′= e Ue  ( ) 11 1 1 1−− − − −′ ′= −U D D D D∆ ∆ ∆ ∆  (27) 

where U  denotes U evaluated at ϑ . We show in the Appendix that under these 

conditions  

 2
1

d
n C qM − −→χ . (28) 

 We note that Mn can be written as 

 ( ) 12 1 1 1ˆ ˆ
nM X N

−− − −′ ′ ′= − e D D D e∆ ∆ ∆ ∆ . (29) 

Thus, Mn ≤ X2. Mn equals X2 with an adjustment to take into account that ϑ  is 

not asymptotically efficient. Note that the second term in (29) becomes zero 

when 1
12

ˆˆˆ −′ ′=e D 0∆ . Since this is the gradient vector that maximum likelihood 

estimates satisfy, in the case of one-stage maximum likelihood estimation 
2

nM X= . 

 The two-stage estimator under consideration is consistent and with G 

given by (16) it satisfies (26) (see Appendix). Thus, with two-stage parameter 

estimates 2d
n IJ I JM − −→χ .  

  

4. Numerical results 
Agresti (1992) asked 61 respondents to compare the taste of Coke, Classic 

Coke and Pepsi using a five point preference scale in a paired comparison design 

{Coke vs. Classic Coke, Coke vs. Pepsi, Classic Coke vs. Pepsi}. The categories 
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were {"Strong preference for i", "Mild preference for i", "Indiference", "Mild 

preference for i´", and "Strong preference for i´",}. For each pair of variables, we 

shall test the assumption that the observed 5 × 5 table arises by categorizing a 

standard bivariate normal density. That is, we are interested in testing a 

substantive hypothesis of normally distributed continuous preferences for the soft 

drinks in the population.  

In Table 1 we provide the thresholds and polychoric correlation for each 

pair of variables estimated in two-stages and the asymptotic standard errors of 

these parameters. The standard errors were obtained as the square root of the 

diagonal of (18) which was consistently estimated by evaluating all derivative 

matrices and probabilities at the estimated parameter values.  

------------------------------------------- 

Insert Tables 1 and 2 about here 

------------------------------------------- 

In Table 1 we also provide goodness of fit results for the two-stage 

estimates using G2, X2 and Mn. Inspecting the goodness of fit tests, we first 

notice that for all three bivariate tables all test statistics suggest that the 

assumption of categorized bivariate normality is reasonable. We also notice that 

the estimated G2 statistics are larger than the Mn and X2 statistics. This is 

because we purposely chose a numerical example with a very small sample size to 

highlight the differences between the statistics. The estimated G2 statistics are 

larger because there are some empty cells in the observed bivariate table and 

these are not included in the computation of G2. On the other hand, all cells are 

used in the computation of both Mn and X2.  

The most surprising fact in Table 1 is that the values for the 

asymptotically correct Mn and the asymptotically incorrect X2 are rather close. 

This is because as reflected in (29), the values of Mn and X2 will be very close if 

the estimator used is highly efficient, yet not fully efficient. With these data, the 

two stage estimator is so highly efficient that it is irrelevant for practical 

purposes whether Mn or X2 is used. To see this, in Table 2 we provide the results 

obtained when the model is estimated using one-stage maximum likelihood. Note 

that in this case, the thresholds estimated from different bivariate tables need 

not be the same across tables. We see in Table 2 that the parameter estimates 

and their standard errors for these tables are indeed very similar to those 

obtained using the two stage approach. As a result, in this example the G2 and 

X2 values obtained using the one and two-stage estimates are very close.  

To further illustrate the high asymptotic relative efficiency of the two 

stage estimator we computed the population asymptotic covariance matrix of the 
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one-stage and two-stage estimators using (8) and (18) at population values 

similar to those encountered in the example: ( )1 1, 0.5, 0.5,1 ′= − −τ , 

( )2 1, 0.5, 0.5,1 ′= − −τ  and ρ = 0.3. At these values, the determinant of the 

asymptotic covariance matrix of the two-stage estimates (18) is only 2.5% larger 

than the determinant of the asymptotic covariance matrix of the one-stage 

estimates. Also, the population asymptotic variances of the two-stage parameter 

estimates are less than 1% larger than for the one-stage parameter estimates. 

Yet, in our implementation, the two-stage estimates are on average 17 times 

faster to compute than the one-stage estimates.  

To investigate the small sample performance of G2, X2 and Mn we 

performed a simulation study using the above population values. The results for 

N = 50, N = 100, and   N = 1000 across 1000 replications are presented in Table 

3.  

------------------------------------------- 

Insert Table 3 about here 

------------------------------------------- 

As can be seen in this table, in the critical region {1% to 10%} G2 tends to reject 

too often the null hypotheses when N = 50 and N = 100. The behavior of X2 and 

Mn is acceptable even when N = 50 in these 5 × 5 contingency tables. This is 

remarkable. Also, we see in this table that the empirical distributions of X2 and 

Mn are very similar for all sample sizes, with Mn taking slightly smaller values, in 

accordance to (29). Thus, the small sample behavior of Mn relative to X2 matches 

the asymptotic efficiency results for the two-stage estimates at these parameter 

values.  

 

5. Discussion 
 The purpose of this research was to investigate whether it was 

theoretically justified the present use of G2 to test categorized bivariate 

normality when the model parameters are estimated in two stages. We have 

shown that with two-stage parameter estimates G2 is not asymptotically chi-

square distributed, and neither is X2. With two-stage parameter estimates, G2 

and X2 are asymptotically equivalent, and they are distributed as a mixture of 

one-degree of freedom chi-squares.  

We have proposed a new test, Mn, that is asymptotically distributed as a 

chi-square with two-stage parameter estimates. The expressions involved in 

computing Mn are actually a side product of the computations needed to obtain 

the two-stage estimates and their asymptotic covariance matrix (see Jöreskog, 
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1994). Our numerical results suggest that G2 yields on average smaller p-values 

than Mn, particularly in small samples. We have also shown that Mn reduces 

algebraically to X2 in the case of one-stage parameter estimates. The more 

efficient the two stage estimates, the closer Mn will be to X2. At the population 

values used in our simulation study, the two-stage estimates are so efficient that 

the empirical distributions of Mn and X2 are very similar. However, at parameter 

values where the two-stage estimates are not so efficient, that is, with large 

polychoric correlations, Mn is not so close to X2. Given the straightforward 

computation of Mn, we recommend that this asymptotically correct statistic be 

used to assess the goodness of fit of the model when two-stage parameter 

estimation is employed. 
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TABLE 1 

Two stage parameter estimates, estimated standard errors, and goodness of fit 

tests  

for Agresti’s soft drink data 

 

Thresholds 

 

 1 2 3 4 

var. 1 -0.796 (0.180) 0.062 (0.161) 0.539 (0.169) 1.510 (0.248) 

var. 2 -0.914 (0.187) -0.062 (0.161) 0.446 (0.166) 1.202 (0.211) 

var. 3 -1.202 (0.211) -0.492 (0.168) 0.103 (0.161) 0.853 (0.184) 

 

 

Correlations and Test Statistics 

 

Vars. Corr. Mn p-value G2 p-value X2 p-value 

(2,1) 0.103 (0.140) 16.478 0.351 21.286 0.128 16.478 0.351 

(3,1) -0.347 (0.129) 14.352 0.499 18.484 0.238 14.358 0.499 

(3,2) 0.005 (0.141) 15.898 0.389 18.569 0.234 15.898 0.389 

 

 

Notes: N = 61; standard errors in parentheses; 15 d.f. 
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TABLE 2 

Joint parameter estimates, estimated standard errors and goodness of fit tests  

for Agresti’s soft drink data 

 

Thresholds 

 

 1 2 3 4 

var. 2 -0.915 (0.187) -0.063 (0.161) 0.445 (0.166) 1.202 (0.211) 

var. 1 -0.797 (0.180) 0.061 (0.161) 0.539 (0.161) 1.511 (0.249) 

var. 3 -1.201 (0.211) -0.484 (0.167) 0.104 (0.160) 0.849 (0.184) 

var. 1 -0.800 (0.180) 0.064 (0.160) 0.538 (0.160) 1.510 (0.250) 

var. 3 -1.202 (0.211) -0.492 (0.168) 0.103 (0.161) 0.853 (0.184) 

var. 2 -0.914 (0.187) -0.062 (0.161) 0.446 (0.166) 1.202 (0.211) 

 

Correlations and Test Statistics 

 

Vars. Corr. G2 p-value X2 p-value 

(2,1) 0.103 (0.144) 21.29 0.128 16.476 0.351 

(3,1) -0.347 (0.121) 18.48 0.238 14.371 0.498 

(3,2) 0.005 (0.152) 18.57 0.234 15.915 0.388 

 

 

Notes: N = 61; standard errors in parentheses; 15 d.f.  
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Appendix: Proofs of key results 
 

Proof of Equation (14):   

A first order Taylor expansion of ( )12 ˆ,ρπ τ  around τ = τ0 yields  

 ( ) ( ) ( )12 12 21ˆ ˆ, ,a= + −ρ ρπ τ π τ ∆ τ τ , 

where 12
21

∂=
′∂

π∆
τ

. Thus, ( )( ) ( ) ( )12 12 21 21 1 12 12ˆ ˆ, a aN N− = − = −B pρπ τ π ∆ τ τ ∆ π , where 

the last asymptotic equality follows from (12). Now,  

( )( ) ( ) ( )( ) ( ) ( )12 12 12 12 12 12 21 1 12 12ˆ ˆ, , aN N N N− = − − − = − −p p I B pρ ρπ τ π π τ π ∆ π  � 

 

Proof of Equation (17): 

11 1 12 =B T 0π  because 1 1
11 1 1 12 11 1 1

− −′ ′= =D T D 0∆ π ∆ π . 12 2 12 =B T 0π  because 
1 1

12 2 2 12 12 2 2
− −′ ′= =D T D 0∆ π ∆ π . Thus, 1 12 =B 0π . 

Also, 22 12 =B 0π  because 1
22 12 12

−′ =D 0∆ π , so the proof is complete � 

 

Proof of Equation (19):   

A first order Taylor expansion of ( )12 ˆπ κ  around κ = κ0 yields  

 ( ) ( ) ( )12 12ˆ ˆa= + −π κ π κ ∆ κ κ , 

where 12∂=
′∂

π∆
κ

. Thus, ( ) ( ) ( )12 12 12 12ˆˆ a aN N− = − = −G pπ π ∆ κ κ ∆ π , where the last 

asymptotic equality follows from (16). Now,  

( ) ( ) ( ) ( ) ( )12 12 12 12 12 12 12 12ˆ ˆ aN N N N− = − − − = − −p p I G pπ π π π ∆ π  � 

 

Proof of Equation (24):   

We write ( )( )1
12
− = − − − = −D I K I J C A CΩ  where =K G∆ , 1

12 12
−′ ′=J D G D∆  and 

1
12 12 12

−′=C Dπ π . Then, ( )21 2 2
12
− = − − +D A AC CA CΩ . Using the standard equalities, 

1
12 12
− =D 1π  ′ =1 0∆  1

12 12
−′ ′=D 1π  ′ ′=1 0∆  (30) 

and (17) we first notice that  
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 = =JC CJ 0  = =KC CK 0   

Thus, AC = C and CA = C. Furthermore, using (30) and 12 1′ =1π  (a scalar), C2 = C. 

Thus, ( )21 2
12
− = −D A CΩ , but noting that 

 J2 = J K2 = K  

we find that ( )( )( ) ( )( )( )22 = − − = − + −A I K I J I K I JK I J . Therefore, ( )21 1
12 12
− −≠D DΩ Ω . � 

 

Proof of Equation (28):   

First, using a Taylor expansion we find analogously to  the proof of (19) that  

 ( ),dN N→e 0 Ω  ( ) ( )′= − −I G I GΩ ∆ Γ ∆ . (31)  

Then, by Lemma 1 in Khatri (1966), U in (27) can be written as  

 ( ) 1

12c c c c

−
′ ′=U D∆ ∆ ∆ ∆  (32) 

where c
′∆  is (C - q) × C matrix satisfying c

′ = 0∆ ∆ . Now, we write Ω in (31) as 

′= Y YΩ Γ , where = −Y I G∆ . Using (32), ′ =Y U U  and =UY Y . Thus,  

 ( )1−′ ′ ′ ′ ′= = −U Y U Y Y Y Y D YΩ Ω Γ Γ Γ ∆ ∆ ∆ ∆ , (33) 

where in (33) we have used (27).  When (26) holds, the second term is zero and therefore 

=UΩ Ω Ω  . 

The degrees of freedom available for testing are given by ( )rank UΩ . Using the 

expression of U in (27) and (26), ′= − −U I G 1Ω ∆ π . This matrix is idempotent and 

therefore its rank equals its trace. The number of degrees of freedom available for testing is 

using (26)  ( ) ( ) ( ) ( )tr tr tr tr 1C q′= − − = − −U I G 1Ω ∆ π .  

Equation (26) can be verified for the two-stage estimator using 1 21 11=T∆ ∆ , 

2 21 12=T∆ ∆ , so that 1 21 =B I∆ . Also, 22 22 =B I∆ . Finally, 1 22 =T 0∆ , 2 22 =T 0∆ , so that 

1 22 =B 0∆ .           � 
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