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Abstract 
High-dimensional contingency tables tend to be sparse and standard goodness-of-fit 
statistics such as X2 cannot be used without pooling categories. As an improvement 
on arbitrary pooling, for goodness-of-fit of large 2n contingency tables, we propose a 
class of quadratic form statistics based on the residuals of margins or multivariate 
moments up to order r. Further, the marginal residuals are useful for diagnosing lack 
of fit of parametric models. These classes of test statistics are asymptotically chi-
square and have better small sample properties than X2.  We also show that these 
classes of test statistics have better power than X2 for some useful multivariate 
binary models.  Related to this class of test statistics is a class of limited information 
estimators based on low-dimensional margins. We show that these estimators have 
high efficiency for one commonly used latent trait model for binary data. 
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1 Introduction

It is common in the Social Sciences to encounter 2n contingency tables, where n can be as large as

several hundreds. These tables arise for instance by collecting the responses of a sample of individuals

to a survey, a personality inventory, or an educational test consisting of n items, each with two

possible responses. A researcher confronted to the problem of modeling such a 2n contingency table

faces several challenges. Perhaps the most important challenge is how to assess the overall goodness-

of-fit of the hypothesized model. For large n, most often binary contingency tables become sparse

and the empirical Type I error rates of X2 and G2 test statistics do not match their expected rates

under their asymptotic distribution. This problem can be overcome by generating the empirical

sampling distribution of the statistic using the parametric bootstrap method (e.g., Collins et al,

1993; Bartholomew & Tzamourani, 1999). However, this approach may be very time consuming if

the researcher is interested in comparing the fit of several models.

If, as it is often the case, the overall tests suggests significant misfit, a second challenge that a

researcher must confront is to identify the source of the misfit. The inspection of cell residuals is

often not very useful to this aim. It is difficult to find trends in inspecting these residuals, and even

for moderate n the number of residuals to be inspected is too large. Perhaps most importantly,

Bartholomew & Tzamourani (1999) point out that because the cell frequencies are integers and the

expected frequencies in large tables must be very small, the resulting residuals will be either very

small or very large. To overcome these two challenges, numerous authors, particularly in Psychomet-

rics, have advocated using residuals for pairs and triplets of variables to assess the goodness-of-fit

in 2n contingency tables. Some key references in these literature are Reiser (1996), Reiser & Lin

(1999), Reiser & VanderBergh (1994), Bartholomew & Tzamourani (1999), and Bartholomew &

Leung (2002).

A third challenge a researcher may face when dealing with large binary tables is a parameter

estimation problem. Take for instance latent trait models (for an overview see Bartholomew &

Knott, 1999) which are extremely popular in the Social Sciences. If the distribution of the latent

traits is assumed to be multivariate normal, as it is most often the case, computing the binary pattern

probabilities is very difficult as the number of latent traits increases. However, estimation for these

models using only univariate and bivariate information is relatively straightforward. There is a long

tradition in Psychometrics of employing estimation methods that only use information from the low

order marginals of the table (e.g., Christoffersson, 1975; Muthén, 1978, 1984, 1993). Here, we refer

to testing and estimation methods that only use the information contained in the low order margins

of the contingency table as limited information methods. There have also been some proposals

in Statistics in using limited information methods (Joe, 1996: Chapter 10). Limited information
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methods naturally yield limited information testing procedures, whose asymptotic properties are

well known (see Christoffersson, 1975; Muthén, 1978, 1993; Maydeu-Olivares, 2001). However, the

asymptotic distribution of full information test statistics when the parameters have been estimated

using limited information procedures has never been studied.

What is needed is a unified framework for limited information estimation and testing in 2n

contingency tables. We provide such a framework in this paper under multivariate Bernoulli sam-

pling. In Section 2, we provide a convenient representation of the multivariate Bernoulli (MVB)

distribution using its joint moments. From the asymptotic distribution of sample joint moments

(marginal proportions), we obtain the asymptotic distribution of marginal residuals. In Section

3, a family of limited information quadratic form statistics, based on these marginal residuals, to

assess the goodness-of-fit of simple null hypotheses is proposed. These statistics are asymptotically

chi-square distributed, and Pearson’s full information X2 statistic is a special case of this family. In

Section 4, we extend the results of Section 3 to composite null hypotheses, the common situation

for applications. Two classes of estimators are considered: (a) minimum variance full information

estimators such as maximum likelihood, and (b) consistent and asymptotically normal estimators.

The latter includes limited information estimators. A family of limited information goodness-of-fit

test statistics is proposed whose members are asymptotically chi-square for both classes of estima-

tors. In order to study asymptotic power of our new statistics, we derive results for the asymptotic

distribution under a sequence of local alternatives for testing one form of a nested null model. In

Section 5, a family of limited information estimators, closely linked to our proposed family of limited

information goodness-of-fit tests, is proposed. These estimators are computationally advantageous

when the multivariate binary probabilities are difficult to compute. We show that these estimators

are highly efficient for one common latent trait model. Section 6 has an example of binary item

response data from Bartholomew & Knott (1999) to illustrate our results. Finally, Section 7 has

conclusions and a discussion of further research.

2 Multivariate Bernoulli (MVB) distributions and asymp-
totic distribution of sample moments

In this section, we give a characterization of the MVB distribution in terms of multivariate moments,

and define the notation used in the remainder of this paper.

Consider an n-dimensional random vector Y = (Y1, . . . , Yn)′ of Bernoulli random variables, with

πi = Pr(Yi = 1), i = 1, . . . , n, and joint distribution:

πy = Pr(Yi = yi, i = 1, . . . , n) y = (y1, . . . , yn), yi ∈ {0, 1}. (2.1)

2
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When we consider a parametric model with parameter vector θ, we write πy(θ) for an individual

probability and π(θ) for the vector of 2n joint probabilities. One convenient ordering of the elements

of π(θ) is by order of the values of y′1 = 0, 1, . . . , n, and by lexicographical ordering within a constant

sum. An example with n = 3 is given below.

The n-variate Bernoulli distribution may be alternatively characterized by the (2n−1)-dimensional

vector π̇ of its joint moments (Teugels, 1990); π̇′ = (π̇′1, π̇
′
2, . . . , π̇

′
n)
′ where π̇′1 = (π1, . . . , πn)′, π̇2 is

the
(
n
2

)
-dimensional vector of bivariate moments with elements E (YiYj) = Pr(Yi = 1, Yj = 1) = πij ,

j < i, and so on up to π̇n = E (Y1 · · ·Yn) = Pr(Y1 = · · · = Yn = 1).

There is a (2n − 1) × 2n matrix T of 1s and 0s, of full row rank, such that π̇ = Tπ. T is an

upper triangular matrix if π is ordered as described above. For example for n = 3, one has

π̇1

π̇2

π̇3

. . .
π̇12

π̇13

π̇23

. . .
π̇123


=



0 1 0 0 1 1 0 1
0 0 1 0 1 0 1 1
0 0 0 1 0 1 1 1
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 1 0 0 1
0 0 0 0 0 1 0 1
0 0 0 0 0 0 1 1
. . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 0 0 0 1





π000

π100

π010

π001

π110

π101

π011

π111


.

The first column of T is a column of zeros, so we can partition T = (0 Ṫ ) and π̇ = Ṫπ̌, with

π =
(

π0···0
π̌

)
. Since π0···0 = 1− 1′π̌, the inverse relationship between π̇ and π is

π =
(

1
0

)
+

(
−1′Ṫ−1

Ṫ−1

)
π̇.

Alternatively, T can be partitioned according to the partitioning of π̇,
π̇1

π̇2
...
π̇n

 =


Tn1

Tn2
...

Tnn

π.

Furthermore, the vector of joint moments of the multivariate Bernoulli distribution up to order

r ≤ n, denoted by πr = (π̇′1, . . . , π̇
′
r)
′, can be written as

πr = Trπ,

where Tr = (T′
n1, . . . ,T

′
nr)

′. Note that by definition πn = π̇.

For a random sample of size N from (2.1), let p and ṗ denote the 2n-dimensional vector of cell

proportions, and the (2n − 1)-dimensional vector of sample joint moments, respectively. Then

√
N (ṗ− π̇) = T

√
N (p− π). (2.2)
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Since (Agresti, 1990)

√
N (p− π) d−→N(0,Γ), where Γ = D− ππ′, D = diag (π),

it follows from (2.2) that
√

N (ṗ− π̇) d−→N(0,Ξ), Ξ = TΓT′.

Let ṗa and ṗb be any two elements of ṗ (not necessarily univariate proportions). Then, the

elements of Ξ are of the form NVar (ṗa) = π̇a(1 − π̇a), NCov (ṗa, ṗb) = π̇a∪b − π̇aπ̇b, so that for

example when n ≥ 3, for i 6= j, j = k, NVar (ṗij) = π̇ij(1− π̇ij), and NCov (ṗij , ṗk) = π̇ij − π̇ij π̇k =

π̇ij(1− π̇k); whereas for i, j, k distinct, NCov (ṗij , ṗk) = π̇ijk − π̇ij π̇k.

Also, let pr be the vector of sample moments up to order r; it has dimension s = s(r) =
∑r
i=1

(
n
i

)
.

Then,
√

N (pr − πr)
d−→N(0,Ξr), Ξr = TrΓT′

r.

Since Tr is of full row rank s, Ξr is also of full rank s (see Rao 1973: p. 30).

3 Limited information tests of simple null hypotheses

Consider a simple null hypotheses H0 : π = π0. The two statistics most widely used in this situation

are the likelihood ratio test statistic, G2 = 2N
∑
c pc ln[pc/πc], and Pearson’s test statistic, X2 =

N
∑
c(pc − πc)2/(πc). Under the null hypothesis (e.g. Agresti, 1990), G2 = X2 + op(1) d−→χ2

2n−1.

However, in sparse tables, when N/2n is small, the empirical distribution of these statistics is not

well approximated by their limiting chi-square distribution (e.g., Koehler & Larntz, 1980).

The poor approximation of X2 to its reference asymptotic distribution in sparse 2n tables can be

attributed to fact that the mean and variance of its reference asymptotic distribution are 2n−1 and

2(2n−1), respectively, but E (X2) = 2n−1 and Var (X2) = 2(2n−1)+N−1[2−2 ·2n−22n+
∑
c π−1

c ]

(Read & Cressie 1988: pp. 176–179). Thus, the discrepancy between the empirical variance of X2

and its variance under its reference asymptotic distribution can be large when some probabilities

πc are small, and for sparse tables, the type I error X2 will be larger than the α level based on its

asymptotic critical value.

On the other hand, we show in the Appendix that X2 can be written as

X2 = N
(
ṗ− π̇

)′
Ξ−1

(
ṗ− π̇

)
.

That is, X2 can be written as a weighted discrepancy between the sample and expected joint

moments of the MVB distribution. But large samples are needed to accurately estimate high order

joint sample moments. As an alternative to X2 in sparse tables we propose testing whether the

4
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sample joint moments match the population moments up to order r, where r depends on the size n

of the model relative to sample size N , using the family of limited information test statistics

Lr = N(pr − πr)′Ξ−1
r (pr − πr), r = 1, . . . , n. (3.1)

For r = n, Ln = X2 (see proof in Appendix). Lr converges in distribution to a χ2
s(r) distribution

as N → ∞. We also show in the Appendix that Lr is invariant to the relabeling of the categories

indexed by 0 and 1.

Only probabilities up to min{2r, n} enter in the computation of Lr and the O(N−1) term of

Var (Lr) is most influenced by the smallest marginal probability of dimension min{2r, n}. Hence we

would expect Lr for small r to have a distribution closer to chi-square for small N even when there

are some small probabilities πc.

If the Lr test suggests significant misfit marginal residuals can be inspected to identify the source

of the misfit. Again, letting ṗa be an arbitrary marginal proportion, the standardized residual is
√

N (ṗa− π̇a)/
√

ξaa , where is the ξaa is the ath diagonal element of Ξ. The asymptotic distribution

of this residual is standard normal.

To illustrate the small sample behavior of Lr, r = 1, 2, 3, against X2, Table 1 has summaries

of simulated type I errors using the asymptotic α = 0.05 level critical values. For null MVB

distributions, we used examples from the exchangeable beta-binomial MVB model with Bernoulli

parameter η and dependence parameter γ (see Joe 1997, Section 7.1; and (3.3) below). Table 1 has

two different null MVB distributions, the one based on (η, γ) = (0.8, 0.5) has much smaller πc values

than that based on (η, γ) = (0.5, 0.5). Table 1 clearly demonstrates the theory referred to above.

Note that the asymptotic critical values for L1, L2 are quite good even for small N/2n ratios.

Bartholomew & Leung (2002) proposed a statistic for testing both simple and composite hy-

potheses that is closely related to Lr. Their statistic can be written as

N
(
ṗ2 − π̇2

)′ ( diag
(
Ξ̇2

))−1 (
ṗ2 − π̇2

)
,

where Ξ̇2 denotes the asymptotic covariance matrix of
√

N (ṗ2 − π̇2). This statistic is not asymp-

totically chi-square distributed even in the case of simple null hypotheses. Bartholomew & Leung

(2002) used the first three moments of this statistic to approximate its sampling distribution using

a chi-square distribution.

We now consider the power of Lr for different r. To do so, we derive the asymptotic distribution

of Lr under a sequence of local alternatives for a parametric MVB model. Let π(θ) be a parametric

MVB model with parameters θ. Let H0 : θ = θ0 and let the family of local alternatives be

H1N : θ = θ0 + ε/
√

N . (3.2)

5
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Let δ = ∂π(θ0)
∂θ′ ε. Under (3.2), from Bishop et al (1975: p. 471)

√
N (p− π0)]

d−→N(δ,D0 − π0π
′
0) and

√
N (pr − π0r)]

d−→N(Trδ,Ξr0),

where Ξr0 = Tr(D0 −π0π
′
0)T

′
r. Therefore under (3.2), the limiting distributions of X2 and Lr are

noncentral χ2 as N → ∞. The noncentrality parameter for X2 is δ′D−1
0 δ, and the noncentrality

parameter for Lr is λr = (Trδ)′Ξ−1
r0 (Trδ). Hence the power of Lr under the sequence of local

alternatives at level α is the probability that a χ′
2
s(λr) random variable exceeds the upper 100αth

percentile from the χ2 distribution with s =
∑r
i=1

(
n
i

)
degrees of freedom.

To illustrate the power of the Lr statistics, we compute the asymptotic power of X2 and Lr

(r = 1, 2, 3) under the local alternatives for families of parametric MVB models. There are a

number of parametric MVB models, for which θ consists of univariate and bivariate parameters.

A simple one is the multivariate binary beta-binomial model [see (7.4) of Joe (1997)], which is a

two-parameter exchangeable MVB model. For this model, with η being the marginal Bernoulli

parameter and γ being the dependence parameter (correlation is γ/(1 + γ)), the joint distribution

in dimension n is

πy = πy(η, γ) =
∏k−1
i=0 (η + iγ)

∏n−k−1
i=0 [1− η + iγ]∏n−1

i=0 (1 + iγ)
, k = 0, . . . , n; y1 + . . . + yn = k. (3.3)

A representative summary of the asymptotic power results is given in Table 2. For (3.3), θ =

(η, γ)′, hence L1 has no power when ε1 = 0 (or univariate margins for alternative same as the null),

but for ε1 6= 0, L1 has more power than X2. For n = 3, L3 is the same as X2 so that they have

same power, and for n > 3, L3 has more power than X2. For n > 2, L2 always has more power than

X2. When ε1 6= 0 and γ > 0, L1 is most powerful, and when ε1 = 0, L2 is most powerful. These

results may be a little surprising because one might have expected more asymptotic power when

more information is employed (higher r), but note that all of the information in the beta-binomial

MVB distribution can be summarized in the bivariate margins (r = 2).

For another comparison, we also considered a MVB distribution with higher order dependence

parameters; one simple model for this is the Bahadur representation [see (7.21) of Joe (1997)] in

the exchangeable case with up to third order terms. This model has one univariate, one bivariate

and one trivariate parameter. In this case, L2 and L3 sometimes have more power than X2 but

not always. Also L3 is sometimes more powerful than L2 and definitely more powerful if the local

alternative makes no change to the univariate and bivariate parameters.

The results of the power comparisons and small sample behavior show the usefulness of the class

of Lr statistics for the case of a MVB parametric model and a simple null hypothesis. In small

samples and sparse tables, the Lr statistics for small r are much more convenient than Ln = X2 as

the asymptotic chi-square approximation is valid for much smaller N .

6
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4 Limited information tests of composite null hypotheses

In the preceding section we consider goodness-of-fit tests for MVB parametric models π(θ) for a

fixed a priori vector θ of dimension q. In practice, in most applications for multivariate binary

data, one is interested in comparing one or more MVB models where θ is estimated from the data

(i.e., composite null hypotheses). In this section, we study the analogs of the Lr statistics in (3.1)

when parameters are estimated, via maximum likelihood or another estimation method. To do so,

throughout this section we assume that that ∆ = ∂π(θ)/∂θ′ is a 2n × q matrix with full column

rank q, so that the model is identifiable. We also assume that the usual regularity conditions on the

model are satisfied so as to fulfill the consistency and asymptotic normality of the θ estimates.

We shall first consider the case where the q-dimensional vector θ is estimated using a consistent

and asymptotically normal minimum variance estimator such as the maximum likelihood estimator

or the minimum chi-square estimator.

4.1 Maximum likelihood and asymptotic minimum variance estimators

Suppose we have a sample of size N . Let θ̂ be the maximum likelihood estimator (MLE) or another

consistent minimum variance estimator. Then (Bishop, Fienberg & Holland, 1975),

√
N (θ̂ − θ) = B

√
N (p− π(θ)) + op(1), B = III−1∆′D−1, (4.1)

and
√

N (θ̂ − θ) d−→N(0,III−1), where III = ∆′D−1∆ is the Fisher information matrix. Letting

ê = p − π(θ̂) = p − π(θ) − ∆(θ̂ − θ) + op(N−1/2) denote the vector of cell residuals, we have
√

N ê d−→N(0,Σ), Σ = (I−∆B)Γ(I−∆B)′ = Γ−∆III−1∆′.

For the marginal residuals, êr = pr − πr(θ̂) = Trê,
√

N êr
d−→N(0,Σr), where

Σr = TrΣT′
r = Ξr −∆rIII−1∆′

r (4.2),

and

∆r =
∂πr(θ)

∂θ′
= Tr

∂π(θ)
∂θ′

= Tr∆ (4.3)

is a s× q matrix.

For an index a which is a subset of {1, . . . , n} of size less than or equal to r, the standardized

marginal residual
√

N êr,a/
√

Σr,aa(θ̂) is asymptotically standard normal. The marginal residuals

should be useful to assess the source of the misfit of a model.

We next consider testing composite null hypotheses of the model using limited information up

to the r-dimensional joint moments. Let r0 be the smallest integer r such that the model is (locally)

identified from the joint moments up to order r. Then, for r ≥ r0, the matrix ∆r is of full column

rank q. Note that this assumption ensures that q < s.

7
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We could consider the statistic

N
(
pr − πr(θ̂)

)′
Σ̂

+

r

(
pr − πr(θ̂)

)
,

where Σ̂
+

r is the Moore-Penrose inverse of Σr(θ̂). This is asymptotically χ2 with degrees of freedom

equal to the rank of Σr, which is between s− q and s. With r = 2, this is the statistic proposed by

Reiser (1996). However, from studying Σr for some MVB models, we discovered that it sometimes

has a small non-zero singular value, so that computation of Σ̂
+

r is not always stable. Hence, below

we propose an alternative quadratic form statistic, with degree of freedom s− q ≤ rank (Σr), based

on a matrix that has Σr as a generalized inverse.

Consider a s × (s − q) orthogonal complement to ∆r, say ∆(c)
r , such that ∆(c)

r

′
∆r = 0. Then,

from (4.2),
√

N ∆(c)
r

′
êr = ∆(c)

r

′√
N

(
pr − πr(θ̂)

)
has asymptotic covariance matrix

∆(c)
r

′
Σr∆(c)

r = ∆(c)
r

′
Ξr∆(c)

r . (4.4)

Thus,
√

N ∆(c)
r

′
êr

d−→N
(
0,∆(c)

r

′
Ξr∆(c)

r

)
. (4.5)

Next, let

Cr = Cr(θ) = ∆(c)
r

(
∆(c)
r

′
Ξr∆(c)

r

)−1
∆(c)
r

′

and note that Cr is invariant to the choice of orthogonal complement (if ∆(c)
r is a full rank orthogonal

complement, then so ∆(c)
r A for a nonsingular matrix A). It is straightforward to verify that Cr =

CrΣrCr, that is, Σr is a generalized inverse of Cr. Letting Ĉr = Cr(θ̂), then we define

Mr = Mr(θ̂) = N ê′r∆̂
(c)

r

(
[∆̂

(c)

r ]′Ξ̂r∆̂
(c)

r

)−1

[∆̂
(c)

r ]′êr = N
(
pr − πr(θ̂)

)′
Ĉr

(
pr − πr(θ̂)

)
. (4.6)

From (4.5) and Slutsky’s theorem,

Mr
d−→χ2

s−q,

where the degrees of freedom are obtained from a result in Rao (1973: p. 30) using the fact that

∆(c)
r is of full column rank s − q and hence Cr is also of rank s − q. Furthermore, using another

result in Rao (1973: p. 77), Cr can be alternatively written as

Cr = Cr(θ) = Ξ−1
r −Ξ−1

r ∆r

(
∆′
rΞ

−1
r ∆r

)−1
∆′
rΞ

−1
r . (4.7)

Consider now the boundary case of this family of test statistics, Mn. From the results in

the Appendix, Mn can be written as a quadratic form in the cell residuals as Mn = N(p −

π(θ̂))′Û(p − π(θ̂)), and Mn = X2 − N(p − π(θ̂))′V̂(p − π(θ̂)), with V̂ = V(θ̂), where V(θ) =

D−1∆(∆′D−1∆)−1∆′D−1. But (p − π(θ̂))′D̂−1∆̂ is the score vector or gradient in maximum

8
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likelihood estimation, so that it is zero for the MLE, or Mn = X2 when θ̂ is the MLE. But for

other minimum variance asymptotically normal estimators, Mn ≤ X2 and Mn, X
2 are equivalent

only asymptotically.

Similar to Lr, Mr is invariant to the relabeling of the categories indexed by 0 and 1 provided

that one stays inside the same parametric model (proof outlined in the Appendix).

To illustrate the finite sample performance of Mr, consider the following model with θ = (α′,β′)′,

α = (α1, . . . , αn)′, β = (β1, . . . , βn)′, and multivariate binary probabilities

πy(α,β) = Pr(Y1 = y1, . . . , Yn = yn) =
∫ ∞

−∞

n∏
j=1

e(αj+βjx)yj

1 + eαj+βjx
φ(x) dx, (4.8)

where φ(x) is the standard normal density. This is the logit-normit model (Bartholomew & Knott

1999), and it is also known as two-parameter logistic model with a normally distributed latent trait

(e.g., Lord & Novick 1968).

Table 3 has the mean, variance, and empirical rejection rates at α = 0.20, 0.10, 0.05, 0.01 for

M2, M3 and X2 with maximum likelihood estimation of a logit-normit model for a 5-variable model

and an 8-variable model with N = 100 and N = 1000. Numerical optimization used a quasi-

Newton routine with analytic derivatives. Computations used 48-point Gauss-Hermite quadrature

for the integrals (4.8) and their derivatives with respect to αi, βi; this is computationally faster,

and matched computations of MLEs to four decimal places when Romberg integration was used

with accuracy 10−6 integrals in (4.8) and their derivatives. The tabulated results are based on the

simulations for which the iterations for maximum likelihood estimation converged; see comments in

Bartholomew & Knott (1999) regarding non-convergence. As can be seen in this table, similar to Lr

versus X2, the Mr statistics have small sample distributions closer to the asymptotic one in sparse

high-dimensional case, especially in the extreme upper tail; in particular, asymptotic critical values

of X2 are not reliable in this case.

4.2 Consistent and asymptotically normal estimators

In this subsection we consider limited information testing of composite hypotheses when the model

parameters are estimated using some alternative consistent estimator θ̃. Other simpler estimation

methods, such as the limited information estimation methods in Section 5, must be considered when

the n-dimensional probabilities may be too difficult to compute.

We assume that θ̃ satisfies
√

N (θ̃ − θ) = H
√

N (p− π(θ)) + op(1), (4.9)

for some q × 2n matrix H. Some special cases of limited information estimators θ̃ (based on low-

dimensional margins) are given in Section 5.

9
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We derive the asymptotic distribution of the vector of cell residuals ẽ = p − π(θ̃) for (4.9).

Note that π(θ̃)− π(θ) = ∆(θ̃ − θ) + op(N−1/2) = ∆H(p− π(θ)) + op(N−1/2). Since p− π(θ̃) =

[p−π(θ)]− [π(θ̃)−π(θ)], then
√

N ẽ = (I−∆H)(p−π(θ))+op(1), and the asymptotic covariance

matrix of
√

N ẽ is Σ̃ = (I−∆H)Γ(I−∆H)′.

Next we consider moments up to order r only, where r ≥ r0. Let the vector of residuals of

the moments be ẽr = pr − πr(θ̃). Since ẽr = Trẽ, the asymptotic distribution of these marginal

residuals is (using (4.3))
√

N ẽr
d−→N(0, Σ̃r), with

Σ̃r = (Tr −∆rH)Γ(Tr −∆rH)′. (4.10)

To test composite null hypotheses with this class of estimators we may use the Mr = Mr(θ̃) statistic

(4.6) with θ̃ in place of θ̂. This is because if ∆(c)
r is a s × (s − q) orthogonal complement to ∆r,

then
√

N ∆(c)
r

′
ẽr = ∆(c)

r

′√
N

(
pr − πr(θ̃)

)
has asymptotic covariance matrix

∆(c)
r

′
Σ̃r∆(c)

r = ∆(c)
r

′
Ξr∆(c)

r ,

the same as the right-hand side of (4.4).

Thus, we have shown that Mr is asymptotically χ2
s−q if θ̃ is any consistent estimator of θ. In

particular we have shown that the full information test statistic Mn = Mn(θ̃) is asymptotically

χ2
2n−1−q for this large class of consistent estimators. Previously, there had not been any goodness-

of-fit statistic that is asymptotically chi-square for any consistent estimator of θ. Note that with

X2(θ̃) representing the X2 statistic based on θ̃, the results in the Appendix, with θ̃ replacing θ̂,

imply that Mn(θ̃) ≤ X2(θ̃); that is, for a consistent estimator that is not the MLE, the asymptotic

distribution of X2(θ̃) is stochastically larger than χ2
2n−1−q.

4.3 Asymptotic distribution under local alternatives and power compar-
ison of X2 and Mr

Similar to Section 3.2, we can compare the asymptotic power of X2 and Mr under a sequence of

local alternatives. There are several ways to specify the null and alternative hypotheses, and we will

take the special case where the null hypothesis is a nested model with parameters to be estimated,

since if fitting models to categorical data one often checks if a simpler (nested) version of a model

explains the data adequately.

We let π(θ) denote a MVB model. For the submodel or nested model, we suppose the parametriza-

tion is of the form θ = (θ′1,θ
′
2)
′ where θ2 = β1.

For testing, the hypotheses are

H0 : (θ′1, β1′)′ vs H1 : (θ′1,θ
′
2)
′. (4.11)

10
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For a sequence of local alternatives, we take θ0 = (θ′10, β01′)′ as a ‘true’ model, and let θ1N =

(θ′10, β01′ + wNγ
′)′ be the sequence of alternative parameter values, with

√
N wN → ε. γ is a

nonconstant vector that sums to 0 (for identifiability). Let θ∗0 = (θ′10, β0)′, and θ∗ = (θ′1, β)′ and

let θ̂N (same dimension as θ∗0) be the MLE (or an asymptotic minimum variance estimator) based

on the null model, assuming a random sample of size N from π(θ1N ). Under the above sequence of

local alternatives, θ̂N
p−→θ∗0 and Σr(θ̂N )

p−→Σr(θ∗0). For the vector of residuals,

√
N (pr − πr(θ̂N )) =

√
N

{
[pr − πr(θN )] + [πr(θN )− πr(θ̂N )]

}
.

Taking expected values the first term is zero in expectation, and expanding the second term leads

to:
√

N E [πr(θN )− πr(θ̂N )] =
√

N [πr(θN )− πr(θ0)]−
√

N E [πr(θ̂N )− πr(θ0)]

=
√

N
[ ∂πr(θ0)
∂(θ′1,θ

′
2)

(θN − θ0)−
∂πr

∂(θ′1, β)
E (θ̂N − θ∗0) + op(||θ̂N − θ∗0||)

]
≈
√

N
[∂πr(θ0)

∂θ′2
wNγ

]
− ε

∂πr

∂(θ′1, β)
ζ + op(1)

→ ε
[∂πr(θ0)

∂θ′2
γ − ∂πr

∂(θ′1, β)
ζ
]

def= δr, (4.12)

where from the Appendix,

εζ = lim
√

N E (θ̂N − θ∗0) = ε[III(θ∗0)]
−1

∑
y

∂ log πy(θ10, β01)
∂(θ′1, β)′

· γ′ ∂πy(θ10, β01)
∂θ2

, (4.13)

and III(θ∗0) is the Fisher information matrix for the model π(θ) under the null hypothesis. Note that

δr = Trδ where δ is computed like δr with π replacing πr in (4.12).

Under the sequence of local alternatives,

√
N (pr − πr(θ̂N )) d−→N(δr,Σr).

For the comparison with the usual chi-square statistic,

√
N (p− π(θ̂N )) d−→N(δ,Σ)

using an argument analogous to above.

Using standard results for non-central distributions (e.g., Rao 1973), noncentrality parameters

for X2 and Mr (r ≥ r0) are δ′D−1
0 δ [D0 = diag (π(θ10, β01)))] and δ′rCrδr respectively, and the

degrees of freedom are 2n − 1 − q and s − q respectively. The power calculations are then like

in Section 3.2. Also, the power under local alternatives can be computed in a similar way for

other consistent estimators. If the estimator is written as a solution to a set of estimating equations

11
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∑N
i=1ψ(θ,yi) (Godambe, 1991), then in (A4), the inverse information matrix is replaced by −Dψ(θ)

where Dψ = E [∂ψ/∂θ′], and ∂`/∂θ is replaced by ψ.

To illustrate our discussion, for the logit-normit model (4.8) with H0 : β = β1, the power for X2

and Mr (r = 2, 3) were computed under sequences of local alternatives. The model under the null

hypothesis is referred to in the educational testing literature as one-parameter logistic (or Rasch)

model with a normally distributed latent trait (e.g., Thissen 1982). Some representative results are

given in Table 4. These show that both M2 and M3 are more powerful than X2, with M2 being the

most powerful of the three. Note that model (4.8) is determined from the univariate and bivariate

moments for n ≥ 3. As a check on the asymptotic power results, simulations were performed to

compared the power for finite N . The relative comparisons were analogous to those in Table 4; the

rate of convergence to the asymptotic power as N increases, depends on the null parameter vector

and direction of local alternative.

In summary, for this commonly used model for multivariate binary data we have shown that the

newly proposed Mr statistics have more power than the X2 statistic.

5 Limited information estimation

In this section, we consider consistent estimators that are limited information estimators, that is,

they are based on low-dimensional margins. A simple class of such estimators are based on weighted

least squares (WLS) of the moment residuals up to order r. The results of Section 4.2 apply to these

estimators.

Consider the estimator θ̃ that is the minimum of

Fr = Fr(θ) = (pr − πr(θ))′Ŵ(pr − πr(θ)), (5.1)

where Ŵ
p−→W = W(θ) positive definite matrix. Obvious choices for Ŵ in (5.1) are Ŵ = I,

Ŵ = (diag (Ξ̂r))−1, and Ŵ = Ξ̂
−1

r , where Ξ̂r indicates that Ξr is consistently evaluated using

sample proportions. Alternatively, we could also minimize

Fr(θ) = (pr − πr(θ))′W(θ)(pr − πr(θ)). (5.2)

If r ≥ r0 and ∆r is of full rank q, and some other mild regularity conditions are satisfied (e.g.,

Browne, 1984; Satorra, 1989; Ferguson, 1996), then θ̃ is consistent and

√
N (θ̃ − θ) = K

√
N (pr − πr(θ)) + op(1) = KTr

√
N (p− π(θ)) + op(1), (5.3)

where K = (∆′
rW∆r)−1∆′

rW. Note that (5.3) has the form of (4.9). Furthermore, we have

√
N (θ̃ − θ) d−→N(0,KΞrK′) (5.4)

12
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and
√

N (pr − πr(θ̂))
d−→N(0, (I−∆rK)Ξr(I−∆rK)′), (5.5)

since from (4.10), Σ̃r = (Tr −∆rKTr)Γ(Tr −∆rKTr)′ = (I−∆rK)Ξr(I−∆rK)′.

For the special case, where W(θ) = Ξr(θ), with Ŵ in (5.1) corresponding to Ξ̂
−1

r , there are

some simplifications of the results. Equations (5.4) and (5.5) simplify to

√
N (θ̃−θ) d−→N(0, (∆′

rΞ
−1
r ∆r)−1),

√
N (pr−πr(θ̂))

d−→N
(
0, Σ̃r = Ξr−∆r(∆′

rΞ
−1
r ∆r)−1∆′

r

)
,

(5.6)

and we obtain the optimal estimator within the class of the form of weighted least squares in the

residuals of moments up to order r. In this case, we can also define a simpler form Qr in place of

Mr(θ̃) in (4.6) that looks more like Lr in (3.1):

Qr = N
(
pr − πr(θ̃)

)′
Ξ̂
−1

r

(
pr − πr(θ̃)

)
. (5.7)

From the theory of quadratic forms on normal random variables (Rao, 1973: Section 3b.4) and

Slutsky’s theorem, Qr is asymptotically χ2 since Ξ−1
r Σ̃r = I−Ξ−1

r ∆r

(
∆′
rΞ

−1
r ∆r

)−1
∆′
r (with Σ̃r

in (5.6)) is idempotent.

Another way to show this asymptotic result, with the degrees of freedom, is as follows. (5.7) can

be considered as a special case of

M ′
r = M ′

r(θ̃) = N
(
pr − πr(θ̃)

)′
Ĉr

(
pr − πr(θ̃)

)
, (5.8)

where Ĉr is Cr(θ) given by (4.7) evaluating all the derivative matrices using consistent parameter

estimates and consistently estimating the marginal probabilities in Ξr using sample proportions.

By Slutsky’s theorem and the results of Section 4, M ′
r is asymptotically χ2

s−q. The estimator

obtained by minimizing (5.1) satisfies (pr − πr(θ̂))′Ŵ∆r = 0′ from the gradient of (5.1), and for

Ŵ = Ξ̂
−1

r , (5.8) becomes (5.7) as the second term (after substitution for Ĉr) becomes zero. Hence

NFr(θ̃) = Qr = M ′
r when Ŵ = Ξ̂

−1

r .

As special cases of the theory laid out in this section we find that minimizing Fn with Ŵ =

Ξ̂
−1

n is equivalent to minimizing the minimum modified chi-square function N
∑2n

c=1(pc − πc)2/pc.

Also, Christoffersson (1975) minimized F2 with Ŵ = Ξ̂
−1

2 to estimate the normit-normit (aka

multidimensional normal ogive) latent trait model (see Bartholomew & Knott, 1999). In general,

limited information methods such as Christoffersson’s are computationally attractive to estimate

models, such as the multidimensional normal ogive model, for which computing cell probabilities is

difficult.

However, for large n such as n > 25, Christoffersson’s estimator becomes unattractive since a

large weight matrix needs to be inverted. Furthermore, large samples may be needed to estimate the

13
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fourth order probabilities involved in Ξ2 using sample proportions. Alternatively, one could minimize

F2 in (5.1) with Ŵ = (diag (Ξ̂2))−1 or Ŵ = I, or (5.2) with W(θ) = ( diag (Ξ2(θ))−1. These

estimators are extremely attractive from a computational viewpoint but they are not asymptotically

efficient even within the class of estimators relying only on univariate and bivariate information.

It is interesting to compare the asymptotic efficiency of alternative members of this class of

estimators. In Table 5 we provide some results for model (4.8) comparing the asymptotic relative

efficiency (ARE) of estimators relative to the MLE, for the weighted residual moments least squares

Fr with Ŵ = I (r = 2, 3), Fr with Ŵ = Ξ̂
−1

2 (r = 2, 3), and Fn with Ŵ = I. The AREs

in Table 5 are based on the average of 100 sets of parameters for (4.8), with the αi’s random

with Uniform(−2, 2) distribution, and the βi’s random with Uniform(1, 2) distribution. Relative

efficiencies were calculated based on diagonal entries and determinants of asymptotic covariance

matrices. The matrices involved in the calculations in Table 5 are:

(a) the asymptotic covariance matrix of the MLE is III−1 from (4.1),

(b) with Ŵ = I for unweighted least squares (ULS), the asymptotic covariance matrix of θ̃ is

(∆′
r∆r)−1∆′

rΞr∆r(∆′
r∆r)−1,

(c) with Ŵ = Ξ̂
−1

r , the asymptotic covariance matrix of θ̃ is (∆′
rΞr∆r)−1.

Note that the estimators in (b) are highly efficient, and the WLS estimators in (c) with r = 2, 3

are extremely highly efficient with efficiency in the 0.99–1.00− range. For (c), the efficiency is shown

as 0.99 in Table 5 in the one case of n = 5, r = 2 only; the r = 3 and n = 8 cases are not displayed

as the efficiency summary is the same as for n = 5, r = 2. Note that ULS with r = n has worse

efficiency than ULS with r = 2, 3. The r = n case is probably worse because it will weight the small

n-dimensional probabilities the same as the larger ones. For r = 2, 3, the marginal probabilities

tend not be vary as much. We also did finite sample (N in the range of hundreds to thousands)

comparisons of the estimators in (b) and (c), and the comparisons are similar to the asymptotic

efficiencies. The MLE is only marginally better in terms of mean squared error.

6 Numerical example

A common task in the Social Sciences is to measure unobservable constructs such as cognitive

abilities, personality traits, or social attitudes by administering a set items written to be indicators

of the unobservable constructs (see Bartholomew, 1988). We now provide an example where a

sample of individuals were asked to respond to a set of items using two categories. Their responses

were collected in a 2n contingency table. These contingency tables are then modeled using a latent

trait model, with the latent trait being the unobservable construct being measured.
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This example for the Social Life Feelings scale is taken from Bartholomew & Knott (1999,

pp. 97–98), who used data from an original study by Schuessler (1982). The data consist of the

responses of 1490 German respondents to n = 5 binary questions intended to measure economic

self-determination. Bartholomew & Knott (1999) fitted a logit-normit model (4.8) to these data

using maximum likelihood.

To illustrate the use of limited information estimation, in Table 6 we provide our maximum

likelihood and bivariate ULS (r = 2) estimates. Our MLE parameter estimates and standard errors

agree with those reported by Bartholomew & Knott (1999). In terms of model fit, we obtained the

results provided in Table 7. The Mr statistics based on MLEs and bivariate ULS are similar, and

lead to the same conclusions. Note that X2 = M5 with r = n = 5 for maximum likelihood estimation

only, from results in Section 4. Unlike Bartholomew & Knott (1999) we have not pooled cells in

computing X2. Nevertheless, our P-value agrees with the reported by these authors. Furthermore,

there is agreement between the results obtained using limited information and full information tests.

Clearly, the model does not fit well in this situation and we proceed to identify the source of

the misfit using the maximum likelihood estimates. From the standardized cell residuals, the binary

patterns that show significant misfit are (10011), (00111), (10110), (11110), and (11111). These

residuals suggest that the model does not fit well for item 4. However, the standardized marginal

residuals up to third order (see Section 4.1) present a very different picture. Significant marginal

residuals are obtained for (1,5), (3,5), (1,2,4), (1,2,5), (1,3,5), and (1,4,5). They clearly suggest that

the model does not fit well for item 5. To verify both conjectures, we fitted a logit-normit model to

these data to all 5 combinations of 4 items (with 7 degrees of freedom). The results are presented in

the second part of Table 7. They clearly indicate that economic self determination is best measured

by the first four items of these scale, as suggested by the marginal residuals.

7 Discussion and conclusions

The most serious challenge faced by a researcher confronted with modeling 2n contingency tables

for large n is how to test the goodness-of-fit of the model, as the empirical distribution of the usual

goodness-of-fit statistics is not well approximated by its asymptotic distribution in large and sparse

tables. In the past, two general solutions have been proposed to overcome this problem: resampling

methods and pooling cells. Resampling methods may be too time consuming when fitting models

that are computationally intensive, whereas pooling cells in large and sparse tables may not make

best use of the multivariate structure and may yield statistics with unknown sampling distribution.

Here we have proposed an alternative approach: testing whether the model reproduces the low order

moments of the MVB distribution. This amounts to pooling cells in a systematic way, so that the
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resulting statistics have a known (asymptotic) distribution.

To this aim, we have proposed two families of test statistics, Lr and Mr where r denotes the

highest order at which testing is performed. Lr is a family of test statistics suitable for testing

parametric hypotheses with a priori determined parameter values, whereas Mr is a family of test

statistics suitable for testing parametric hypotheses where the parameters are to be estimated from

the data.

In large and sparse 2n tables Lr for small r (r = 1, 2, 3) should be employed instead of X2 as the

former have more precise empirical Type I errors and may be asymptotically more powerful than the

latter. Similarly, with estimated model parameters, Mr for small r should be used to test composite

parametric hypotheses instead of X2, as the former have more precise empirical Type I errors and

may be asymptotically more powerful than the latter.

If the model is identified from the margins up to order r and if it is estimated using a consistent

and asymptotically normal estimator, Mr is asymptotically χ2
s(r)−q, with degrees of freedom equal

to the total number of multivariate moments used for testing minus the number of parameters being

estimated. This is a remarkable result as we are not aware of any goodness-of-fit statistic for 2n

tables whose asymptotic distribution has been described under such general conditions. A special

case of Mr is Mn. This is a full information statistic that can be used to assess the goodness-of-fit

to the table cells under the same conditions stated above. For minimum variance consistent and

asymptotically normal estimators, Mn is asymptotically equal to X2. In particular, in the case of

maximum likelihood estimation, Mn = X2.

After assessing the overall goodness-of-fit of a model, if this is poor, it is necessary to determine

the source of the misfit. We propose using marginal residuals which are asymptotically standard

normal. As our numerical example illustrate, the use of these residuals can be much more informative

than the use of cell residuals.

With high-dimensional sparse contingency tables for which maximum likelihood estimation may

not be computationally feasible, limited information estimators are often used in Psychometrics to

estimate normit-normit and related latent trait models, generally using a multi-stage approach that

makes use of the information contained in the univariate and bivariate margins of the table (see

Christoffersson, 1975; Jöreskog, 1994; Lee, Poon & Bentler, 1995; Maydeu-Olivares, 2001, 2002;

Muthén, 1978, 1984, 1993). Such popular software packages as LISREL (Jöreskog & Sörbom, 2001),

EQS (Bentler, 1995) and MPLUS (Muthén & Muthén, 2001) can be used to estimate these models

using these sequential limited information estimators. Here we have provided a full information test

statistic, Mn, which can be used to assess the goodness of fit of models estimated using these sequen-

tial procedures. Also, we have considered a class of one-stage estimators obtained by minimizing
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Fr in (5.1), which includes both limited and full information estimators. This class of estimators is

related to the class of goodness-of-fit test statistics Mr.

As n gets larger, there are computational details that have to be considered to manage the

computations within available computer memory. In future research, we will provide other related

approaches that are computationally simpler. Also, we have not covered here sparse multidimen-

sional tables in which the categorical variables take more than two values. Our results extend readily

to this case, which we will discuss in a separate report.
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Appendix

Ln = X2, and Mn(θ̂) ≤ X2(θ̂) with equality for MLE

We claim that X2 = N(ṗ− π̇)′Ξ−1(ṗ− π̇), which is the definition of Ln since πn = π̇ and Ξn = Ξ.

To see this, let ė = ṗ− π̇, ě = p̌− π̌ and e = p− π. Since ė = Ṫě,

N(ṗ− π̇)′Ξ−1(ṗ− π̇) = N ě′Ṫ′Ξ−1Ṫě′. (A1)

Letting Ď = diag (π̌), Ξ = Ṫ(Ď− π̌π̌′)Ṫ′, and

Ξ−1 = (Ṫ)′
−1

(Ď−1 + 1D−1
0 1′)Ṫ−1, (A2)

where D0 = π0···0. Thus, (A1) is the same as N(ě′Ď−1ě + ě′1D−1
0 1′ě). Since e can be partitioned

as e′ = (e0, ě′)′ where e0 = −1′ě, then (A1) becomes

N(ě′Ďě + D−1
0 e2

0) = Ne′D−1e = X2.

For Mn, let ė = ṗ− π̇(θ̂) = pn −πn(θ̂), ě = p̌− π̌(θ̂), and ê = p−π(θ̂) for an estimator θ̂, so

that

Mn = N ė′Ĉnė, Ĉn = Cn(θ̂), Cn = Ξ−1 −Ξ−1∆n

(
∆′
nΞ

−1∆n

)−1
∆′
nΞ

−1.

We claim that

Mn = N ê′Û(ê), Û = U(θ̂), where U = U(θ) = D−1 −D−1∆(∆′D−1∆)−1∆′D−1,

so that

Mn = X2(θ̂)−N ê′V̂ê, V̂ = V(θ̂), where V(θ) = D−1∆(∆′D−1∆)−1∆′D−1.

Let hats on matrices denoting evaluation at θ̂. For the proof of the claim, from the above

algebraic result for X2 and Ln, ė′Ξ̂
−1

ė = ê′D̂−1ê. With partitioning of ∆′ =
(
∆′

0 ∆̌
′ ), we have

∆n = Ṫ∆̌. Thus, from (A2), ∆′
nΞ

−1∆n in the definition of Cn for Mn equals ∆̌
′
(Ď−1+1D−1

0 1′)∆̌,

evaluated at θ̂. But since 1′∆ = 0′, 1′∆̌ = −∆0, and ∆′
nΞ

−1∆n = ∆′D−1∆ at θ̂. Similarly, since

ė = Ṫě,

ė′Ξ̂
−1

∆̂n = ě′Ṫ′Ṫ′−1
( ̂̌D−1

+ 1D̂−1
0 1′

)
Ṫ−1Ṫ ̂̌∆ = ě′ ̂̌D−1 ̂̌∆ + e0D̂

−1
0 ∆̂

′
0 = ê′D̂−1∆̂. (A3)

where e0 = −1′ě. Hence the claim is established.

Finally, (A3) is 0′ if θ̂ is the MLE since it is the vector of score equations that the MLE satisfies.

So Mn = X2 for the MLE.
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Invariance to 0-1 labeling

For any statistical procedure with binary data, it is important to check on the effect of the labeling

of categories. We first prove the invariance for Lr. If the 0-1 labeling is reversed, then π (in the

ordering described in Section 2) is completely reversed, that is, the probability vector becomes Λπ,

where Λ is a 2n × 2n matrix which has 1s in the (i, 2n − i) positions for all i and 0s elsewhere. Let

e = p − π and er = pr − πr. Under the relabeling, er = Tre → TrΛe = Λ∗
rTre, where Λ∗

r is a

s(r)× s(r) matrix, with entries in {−1, 0, 1}, such that Λ∗
rΛ

∗
r = I. The entries of Λ∗

r come from the

expansion of E [
∏
j(1 − Yij )], in terms of the MVB moments, over different subsets {i1, . . . , ik} of

size 1 to r; the factor of 1 cancels from the differencing of p and π. If the relabeling is done twice,

then we have

Tre = TrΛΛe = Λ∗
rTrΛe = Λ∗

rΛ
∗
rTre,

which shows that Λ∗
rΛ

∗
r = I.

Furthermore with the relabeling, Γ = diag (π)− ππ′ → ΛΓΛ′, Ξr = TrΓT′
r → Λ∗

rΞrΛ∗
r
′ and

e′rΞ
−1er → e′rΛ

∗
r
′(Λ∗

r
′)−1Ξ−1

r (Λ∗
r)
−1Λ∗

rer = e′rΞ
−1er,

which establishes the invariance.

For the relabeling for a parametric MVB family and Mr, suppose the relabeling changes θ to θΛ

with invertible Jacobian J = ∂θ/∂θΛ. We just summarize the effect of the relabeling on all of the

matrices and vectors in Mr:

∆ → Λ∆J′, ∆r → Λ∗
r∆rJ′, Cr → (Λ∗

r
′)−1Cr(Λ∗

r)
−1,

θ̂ → θ̂Λ, p− πr(θ̂) → Λ∗
r [p− πr(θ̂)].

It follows that Mr is invariant to the 0-1 relabeling.

Local alternatives: expected value of MLE

Consider a parametric family is f(y;θ) which can be continuous or discrete; f is a density relative

to measure ν (Lebesgue or counting measure). This subsection concerns a limit of the expected

value of the maximum likelihood estimator (MLE) for a sequence of local alternatives when the null

hypothesis is a nested submodel of a certain form. The usual regularity conditions are assumed

to hold. The technique of derivation can be used for other forms of nested model (e.g., some of

the parameters fixed under H0) but we cannot obtain a result to be used for all forms of nested

submodels.

19



IE WORKING PAPER WP 14/03 05/05/2003

For the submodel, we suppose the parametrization is of the form θ = (θ′1,θ
′
2)
′ where θ2 = β1.

We obtain the maximum likelihood estimator based on the submodel, and derive its distribution

under local alternatives in the full model. That is, the hypotheses are

H0 : (θ′1, β1′)′ vs H1 : (θ′1,θ
′
2)
′.

For a sequence of local alternatives, we take θ0 = (θ′10, β01′)′ as a ‘true’ model, and let θ1N =

(θ′10, β01′ + wNγ
′)′ be the sequence of alternative parameter values. γ is a nonconstant vector that

sums to 0 (for identifiability).

Let θ∗0 = (θ′10, β0)′ and θ∗ = (θ′1, β)′ and we write the density for H0 as f∗(;θ∗) = f(·; (θ′1, β1′)′).

Let `(θ∗; y) = log f∗(y;θ∗), ˙̀ = ∂`/∂θ∗, ῭= ∂2`/∂θ∗∂θ∗
′.

Suppose that the MLE θ̂
∗
N is a solution of L(θ∗) =

∑N
i=1

˙̀(θ∗, yiN ) = 0, where y1N , . . . , yNN is

a random sample from f(·;θ1N ). Take an expansion of L about θ∗0 to get

0 =
∑

˙̀(θ̂N ; yiN ) ≈
∑

˙̀(θ∗0; yiN ) +
∑

῭(θ∗0; yiN )(θ̂N − θ∗0) + op(||θ̂N − θ∗0||)

or
√

N (θ̂N − θ∗0) ≈
[
−N−1

∑
῭(θ∗0; yiN )

]−1

N−1/2
∑

˙̀(θ∗0; yiN ) + op(1).

Under the sequence of local alternatives,

−N−1
∑

῭(θ∗0; yiN )
p−→III(θ∗0),

where III is the Fisher information matrix for the model f∗(·;θ∗). Hence,

√
N E (θ̂N − θ∗0) ≈ [III(θ∗0)]

−1
√

N E [ ˙̀(θ∗0;Y1N )]. (A4)

Taking an expansion of f(y; (θ′10, β01′ + wNγ
′)′) about θ2 leads to

E [ ˙̀(θ∗0; y1N )] ≈
∫

˙̀(θ∗0; y)
[
f(y; (θ′10, β01′)′) + wNγ

′ ∂f

∂θ2

]
dν(y) = wN

∫
˙̀(θ∗0; y)γ′

∂f

∂θ2
dν(y).

Finally, if
√

N wN → ε, then (A4) becomes (as N →∞)

√
N E (θ̂N − θ∗0) → ε[III(θ∗0)]

−1

∫
˙̀(θ∗0; y)γ′

∂f

∂θ2
dν(y). (A5)

For a discrete model (ν corresponding to counting measure), write f(y; θ) = πy(θ), where y may

be a vector, e.g., binary vector of dimension n. Then (A5) becomes (4.13).
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Table 1:
Type I errors (based on 104 simulations) using asymptotic α = 0.05 level critical values for
X2, L1, L2, L3; MVB probabilities from model (3.3)

(η, γ) n N X2 L1 L2 L3

(0.5,0.5) 5 100 0.054 0.049 0.051 0.055
5 1000 0.053 0.053 0.051 0.052
10 100 0.230 0.051 0.055 0.084
10 1000 0.089 0.051 0.049 0.055

(0.8,0.5) 5 100 0.071 0.053 0.057 0.066
5 1000 0.056 0.049 0.054 0.053
10 100 0.326 0.056 0.081 0.142
10 1000 0.140 0.052 0.053 0.065
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Table 2:
Power of X2, L1, L2, L3 at level α = 0.05 for a sequence of local alternatives, model (3.3)

m η γ ε1 ε2 X2 L1 L2 L3

5 0.5 0.0 1.0 1.0 0.890 0.952 0.966 0.920
5 0.5 0.1 1.0 1.0 0.648 0.858 0.809 0.700
5 0.5 0.3 1.0 1.0 0.398 0.697 0.553 0.443
5 0.6 0.3 1.0 1.0 0.441 0.718 0.600 0.488
5 0.2 0.3 1.0 1.0 0.554 0.896 0.722 0.606
5 0.5 0.0 0.0 2.0 0.972 0.050 0.995 0.983
5 0.5 0.1 0.0 2.0 0.608 0.050 0.774 0.661
5 0.5 0.3 0.0 2.0 0.202 0.050 0.287 0.223
5 0.2 0.3 0.0 2.0 0.158 0.050 0.212 0.173
10 0.5 0.0 0.5 0.5 0.121 0.542 0.561 0.296
10 0.5 0.1 0.5 0.5 0.073 0.295 0.197 0.118
10 0.5 0.3 0.5 0.5 0.060 0.177 0.106 0.078
10 0.6 0.3 0.5 0.5 0.061 0.184 0.114 0.081
10 0.2 0.3 0.5 0.5 0.063 0.272 0.126 0.087
10 0.5 0.0 0.0 1.0 0.256 0.050 0.952 0.708
10 0.5 0.1 0.0 1.0 0.083 0.050 0.278 0.153
10 0.5 0.3 0.0 1.0 0.057 0.050 0.089 0.069
10 0.2 0.3 0.0 1.0 0.056 0.050 0.078 0.065
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Table 3:
Small sample distribution (based on convergent cases from 104 simulations) for X2,M2,M3;
MVB probabilities from model (4.8); mean, variance and exceedances of asymptotic upper 0.2,
0.1, 0.05, 0.01 quantiles. (α;β) = (−1,−.5, 0, .5, 1; 1, 1.3, 1.6, 1.9, 2.2) for n = 5; (α;β) =
(−1,−.5, .5, 1,−1,−.5, .5, 1; .5, .9, 1.3, 1.6, 1.6, 1.3, .9, .5) for n = 8. Convergence rates were 63% for
n = 8, N = 100 and 69% for n = 5, N = 100, and over 90% for other cases.

n N statistic df mean var. α = .2 α = .1 α = .05 α = .01
5 100 X2 21 21 104 .21 .14 .10 .05

M2 5 4.9 8.6 .18 .09 .04 .006
M3 15 15 33 .19 .10 .06 .02

5 1000 X2 21 21 46 .20 .11 .06 .02
M2 5 5.0 10 .20 .10 .05 .009
M3 15 15 30 .20 .10 .05 .01

8 100 X2 239 235 2× 105 .22 .20 .19 .16
M2 20 20 40 .20 .11 .06 .012
M3 76 76 300 .25 .18 .13 .06

8 1000 X2 239 240 1× 104 .27 .23 .21 .17
M2 20 20 39 .20 .09 .05 .009
M3 76 76 160 .19 .10 .05 .015

8 2500 X2 239 240 5× 103 .27 .22 .18 .12
M2 20 20 41 .20 .10 .05 .009
M3 76 76 160 .19 .10 .05 .009
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Table 4:
Power of X2,M2,M3 at level α = 0.05 for a sequence of local alternatives, model (4.8) and hypothesis
(4.11), ε = 10.

n α β γ X2 M2 M3

5 -1,-0.5,0,0.5,1 1.0 -0.6,-0.3,0,0.3,0.6 0.131 0.136 0.104
5 -1,-0.5,0,0.5,1 1.5 -0.6,-0.3,0,0.3,0.6 0.118 0.120 0.095
5 -1,-0.5,0,0.5,1 2.0 -0.6,-0.3,0,0.3,0.6 0.097 0.098 0.081
5 -1,-0.5,0,0.5,1 1.0 0,-0.6,0.3,-0.6,0.9 0.220 0.358 0.251
5 -1,-0.5,0,0.5,1 1.5 0,-0.6,0.3,-0.6,0.9 0.192 0.311 0.219
5 -1,-0.5,0,0.5,1 2.0 0,-0.6,0.3,-0.6,0.9 0.147 0.230 0.165
8 -1,-0.5,0.5,1,-1,-0.5,0.5,1 1.0 -0.6,-0.3,0.3,0.6,0.6,0.3,-0.3,-0.6 0.122 0.286 0.163
8 -1,-0.5,0.5,1,-1,-0.5,0.5,1 1.5 -0.6,-0.3,0.3,0.6,0.6,0.3,-0.3,-0.6 0.106 0.229 0.136
8 -1,-0.5,0.5,1,-1,-0.5,0.5,1 2.0 -0.6,-0.3,0.3,0.6,0.6,0.3,-0.3,-0.6 0.087 0.165 0.106
8 -1,-0.5,0.5,1,-1,-0.5,0.5,1 1.0 -0.6,-0.3,0.3,0.9, 0.3,-0.3,0.6,-0.9 0.176 0.489 0.270
8 -1,-0.5,0.5,1,-1,-0.5,0.5,1 1.5 -0.6,-0.3,0.3,0.9,0.3,-0.3,0.6,-0.9 0.146 0.392 0.216
8 -1,-0.5,0.5,1,-1,-0.5,0.5,1 2.0 -0.6,-0.3,0.3,0.9,0.3,-0.3,0.6,-0.9 0.112 0.270 0.155
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Table 5:
Comparison of asymptotic relative efficiencies (ARE) for WLS/ULS estimators with maximum like-
lihood, average over 100 simulations with αi’s random with Uniform(−2, 2) distribution, and βi’s
random with Uniform(1, 2) distribution. Relative efficiencies with calculated based on diagonal
entries and determinants of asymptotic covariance matrices.

n estimator quantity avg(ARE) SD(ARE) min(ARE)
5 ULS(r = n) αi 0.78 0.13 0.35

βi 0.74 0.14 0.35
det1/10 0.80 0.05 0.70

5 ULS(r = 2) αi 0.96 0.06 0.70
βi 0.93 0.07 0.67

det1/10 0.96 0.02 0.92
5 ULS(r = 3) αi 0.94 0.07 0.65

βi 0.87 0.06 0.63
det1/10 0.93 0.02 0.88

5 WLS(r = 2) αi 0.99 0.01 0.98
βi 0.99 0.01 0.97

det1/10 0.99 0.01 0.99
8 ULS(r = n) αi 0.62 0.14 0.16

βi 0.62 0.16 0.19
det1/20 0.65 0.04 0.57

8 ULS(r = 2) αi 0.94 0.06 0.65
βi 0.89 0.08 0.57

det1/20 0.93 0.02 0.89
8 ULS(r = 3) αi 0.91 0.10 0.59

βi 0.81 0.07 0.54
det1/20 0.88 0.02 0.84
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Table 6:
Values of MLEs and bivariate ULS estimators for the data example from Bartholomew and Knott
(1999, pp. 97-98)

parameter MLE ULS(r = 2)
estimate se estimate se

α1 -2.35 0.13 -2.57 0.18
α2 0.80 0.06 0.80 0.06
α3 0.99 0.09 1.00 0.10
α4 -0.67 0.13 -0.63 0.11
α5 -1.10 0.07 -1.10 0.08
β1 1.20 0.15 1.44 0.20
β2 0.71 0.09 0.73 0.09
β3 1.53 0.17 1.56 0.18
β4 2.55 0.41 2.34 0.35
β5 0.92 0.10 0.93 0.11
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Table 7:
Values of goodness-of-fit statistics for the data example from Bartholomew and Knott (1999, pp. 97-
98)

estimator statistic value df p-value
MLE X2 38.9 21 0.010
MLE M2 15.7 5 0.008
MLE M3 27.9 15 0.022
MLE X2 (item 1 deleted) 17.9 7 0.013
MLE X2 (item 2 deleted) 12.0 7 0.101
MLE X2 (item 3 deleted) 15.3 7 0.032
MLE X2 (item 4 deleted) 19.4 7 0.007
MLE X2 (item 5 deleted) 6.0 7 0.540
ULS(r = 2) M5 41.3 21 0.005
ULS(r = 2) M2 16.5 5 0.006
ULS(r = 2) M3 29.1 15 0.016
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