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Abstract 
Previous studies have reported mixed results with regard to the success of technical trading rules. 
Studies that provide positive evidence that simple technical trading rules generate valuable signals 
are [Brock, Lakonishok and Lebaron (1992), Karjalainen, R.E. (1994), Bessembinder and Chan 
(1995), Mills (1997), and Fernandez et al. (1999)]. Studies rejecting the utility of technical trading 
rules are [Hudson et al. (1996)  or Allen, F. and Karjalainen R.E. (1999)]. A recent body of work 
has applied evolutionary algorithms to the design of trading rules [see Karjalainen (1994) and Allen 
and Karjalainen (1999) for genetic programming models of trading and Fernandez et al (2001) and 
Nuñez-Letamendia (2002) for genetic algorithms models]. The basic approach of these studies is to 
choose trading rules based on an genetic optimisation procedure using in-sample-data and then 
testing the performance of these rules in out-of-the-sample data.   
 
This paper tests whether the most popular technical rule – the moving average – generates profits in 
the Madrid Stock Exchange by utilizing genetic algorithms to optimise the rule in the in-sample 
period (May 1990- May 1995) and applying it to the out-sample period (May 1995 – May 1996) 
over 25 stocks and indexes. We report the lack of utility, even before transaction costs, of this 
popular technical rule. 
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1.- INTRODUCTION  
 

"One can never prove the statement that past return cannot be used to predict future 
returns since there are an infinite number of ways that the sequence of past prices can 
be used to forecast futures prices. All that can be done is to test particular ways of 
combining past price data to predict future returns".  

Elton and Gruber (1984).  
 

That is what we try to do in this paper, to test whether a particular way of combining 
past prices, what is what moving average rules do, is useful to beat the market.  
 

Technical analysis has been applied by practitioners since long time ago, it is probably 
as old as the stock market itself. The first studies about technical indicators (focussed on 
correlations analysis of stock price time series) appeared around 1930. However, is in 
the sixty’s decade, when this body of literature take shape, being developed the 
“efficient market hypothesis” (EMH) framework. The EMH has important implications 
for technical analysis, as the weak form of EMH supports the idea that the examination 
of the sequence of historical prices is worthless to forecast future prices in the market, 
what means the rejection of trading rules based on past prices, included moving average rules.  
 
Although the classical literature concluded that markets are efficient in its weak form, 
some recent papers provides evidence of the forecast ability of technical indicators. 
Brock et al. (1992) is probably the most popular quote in most of the papers analysing 
technical rules, and particularly moving average rules. Although Brock et al (1992) do 
not consider transaction costs, their results for the Dow Jones Index are consistent with 
the predictive power of both technical rules, moving average and trading range break. 
They find that buy signals, generated by the technical rules, consistently produce higher 
returns and less volatility than sell signals, and further, returns following sell signals are 
negative, what is contradictory with equilibrium market models.    
 

A recent body of work has applied evolutionary algorithms to the design of trading rules 
[see Karjalainen (1994) and Allen and Karjalainen (1999) for genetic programming 
models of trading and Fernandez et al (2001) and Nuñez-Letamendia (2002) for genetic 
algorithms models]. The basic approach of these studies is to choose trading rules based 
on an optimisation procedure using in-sample-data and then testing the performance of 
these rules in out-of-the-sample data. We follow this body of literature to test the 
forecast ability of moving average rules in the Madrid Stock Market.  
 

To test the profitability of moving average crossover rule, we build a genetic algorithm 
model which function is to optimise the moving averages - the length of each one of the 
two moving averages, which crossing is used to generate trades. In this way, the 
parameter for the moving average is chosen by the own system, instead by the 
researcher, avoiding data-snoopy problems. In this system, a buy signal or long position 
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is generated if the short-term moving average of prices (SMAt)  is greater than the long-
term moving average of prices (LMAt), and a short position is hold if the LMAt is 
above the SMAt.  
 

Short positions:     
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             being s and l selected by the genetic algorithm in the in-sample period 

 

The paper is organised as follows: Section 2 presents the data and the genetic algorithm 
model used to optimise the moving average rules. In section 3 we study the empirical 
results obtained through our model in in-sample and out-sample periods. Finally, 
section 4 offers some concluding comments.   
 

 

2.- DATA AND MODELS  

A. Data 

The data series used in this study comprise a sample of daily prices for 23 stocks and 2 
indexes from the Madrid Stock Exchange (MSE). The stocks and indexes in the sample 
are: Banco BBV, Dragados, Endesa, Repsol, Banco Santander, Unión Fenosa, Viscofan, 
Cantábrico, Ence, Eléctricas Reunidas de Zaragoza, Tabacalera, Bankinter, Cubiertas, 
General Index, Metrovacesa, Acerinox, Gesa,  Iberdrola, Sevillana, Banco Popular, 
Telefónica, Vallehermoso, Acesa, Foccsa, and Ibex35. 
 

We use data from the 29th May 1990 to the 15th May 1995, 1,232 trading days, to 
optimise the moving average rules for every stock and index (a whole of 30,800 point 
data for all the sample: 1,232 x 25 stocks or indexes). In addition we use data from the 
16th May 1995 to the 15th May 1996, 251 trading days, as out-sample period to test the 
forecast ability of “genetically” optimised moving average rules, (6,275 point data for 
all the sample).  
 
 
B. Model 

Genetic algorithm methodology has been applied to a wide variety of problems in the 
financial field, such as: prediction of bond market (Murray R., 1995), forecasting 
financial distress (Varetto, 1998), forecasting interest rates (Ju et al. 1997), modelling 
foreign exchange markets (Neely et al., 1999), designing security trading systems 
(Karjalainen et al., 1994; Bauer, 1994; Allen et al.,1999; Fyfe et al., 1999; Fahlenbrach, 
2002), forecasting market volatility (Neely et al. 2002), EMH analysis (Chen and Yeh, 
1997); or  corporate financing choices (Noe et al., 2003).  
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As defined by Koza (1992), “The genetic algorithm simulates Darwinian evolutionary 
processes and naturally occurring genetic operations on chromosomes.” ..”The genetic 
algorithm is a highly parallel mathematical algorithm that transforms a set (population) 
of individual mathematical objects (typically fixed-length character strings patterned 
after chromosome strings), each with an associated fitness value, into a new population 
(i.e. the next generation) using operators patterned after the Darwinian principle of 
reproduction and survival of the fittest and after naturally occurring genetic 
operations..”.  
 

The genetic algorithm starts to work by selecting a random sample of potential solutions 
to the problem to be solved - previously the problem has to be formulated in vectorial or 
chromosomical notation. In a second step the fitness value of every chromosome 
(potential solution) – in accordance with an objective function that classifies the 
solutions from the best to the worst – is computed. The third step applies the 
reproduction operator to the initial set of potential solutions, through what individuals 
with higher fitness values are more largely reproduced. There are different selection 
methods to perform reproduction in the genetic algorithm - to choose the individuals 
that will create offspring for the next generation. One of the most common method and 
the one used in this paper is the “roulette wheel” (see Goldberg 1989). This method is 
equivalent to a fitness-proportionate selection method for populations big enough. 
Rather than work with the raw fitness of an individual ith, )(irf , to carry out the 
reproduction process, it is more useful to work with normalized fitness functions, f(i): 
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and n is the number of individuals in the population of the genetic algorithm. 

 
In a forth step the genetic algorithm applies the crossover and mutation operators, where 
information of the former offspring is exchanged and mutated to finish the process of 
generation of a new population of individuals (a new generation of potential solutions). 
At this point, iterative repetition of steps second to forth take place until the fitness 
value of populations converge or until a fixed-number of times (what is called the 
number of generations that the genetic algorithm is run). Figure 1 shows the “modus 
operandi” of a genetic algorithm.  
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Figure 1: Genetic algorithm procedure 
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We use a genetic algorithm programmed in C to optimise technical trading rules based 
on moving averages crossing. What the genetic algorithm does is to find the number of 
sessions (the length) that have to be used in each moving average with the aim of 
maximizing the accumulated return1 obtained by the rule in the training period. The 
ranges allowed for the length of the moving averages are 1-64 and 1-256 sessions2. 
These ranges lead to 16,384 different rules. Figure 2 presents the main features of the 
genetic algorithm built.  

                                                 
1 See the equations presented in figure 2. 

2 When both moving averages are built with 1 session, the system follows the strategy of buy and hold. If 
only one of the moving averages is built with 1 session, the rule is the crossing of one moving average 
with the stock price. If both moving averages are built with the same length, then the rule is the crossing 
of the moving average of this length with the stock price.    
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Figure 2:  Features of our genetic algorithm  

 

a.- Concatenated chromosomes with binary codification, which represent two variables: 
the number of sessions to be used in each of the two moving averages. The number of 
genes of these variables depends on the size allowed for the lengths of the moving 
averages.  For a length of 64, six genes are needed when binary codification is use (26 =64); 
for a length of 256,  8 genes are needed (28=256):  
                            chromosomes’ type       (110101, 01011110) 

b.- The fitness function is the accumulated return generated by the trading rule constructed by  

     
1
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ARf  is the accumulated return at the end of the sample period; DRi   the daily return at 
day i; Pi denotes the stock price at day i; and δ  is a dummy variable that takes the value 
of 1 for buy signals (long positions) and (–1) for sale signals (short positions).  
c.- The reproduction operator is applied by the roulette algorithm (see Goldberg 1989).  
d.- Binary crossover and mutation operators with proportions of 60% of the individuals 
and 0.5% of the genes are implemented.  
e.- The number of individuals in each generation is set to 50, equivalent to 0.3% of the 
total population which comprises 16,384 individuals (or different rules)  and the number 
of generations is set to 50.  
 
 
 
We use four different versions of the same genetic algorithm (with different design 
parameters), that are running over every stock in the sample: Model 1 is designed with 
the parameters  and features described in figure 2. Model 2 changes the population size 
from 50 to 100 and the number of generation to 25, instead 50. Models 3 and 4 are the 
same that model 1 and 2 respectively, but with the introduction of a scaling process in 
the fitness function: During the initial phase of the genetic algorithm run, it is frequent 
that exceptionally good potential solutions arise. If their reproduction is not regulated, 
these solutions would greatly reproduce themselves and could lead to a problem of 
premature convergence to a local optimum. Scaling of the fitness function is one of the 
available tools to solve this problem, in the sense that it controls the reproduction of 
solutions, thus impeding the best ones to excessively reproduce themselves or the worst 
ones to prematurely be lost in the first generations of the genetic algorithm.  At the same 
time, scaling  increases the differentiation between good solutions in the final phases of 
the genetic algorithm run, thus reproducing the best ones more than what would occur 
in accordance with their fitness values.  
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Scaling methods are based on algorithms that map raw fitness values  keeping the 
selection pressure relatively constant along the generations of the genetic algorithm, 
rather than focus in the fitness variance of the population3.  
 

We use the scaling process proposed by Goldberg (1989). The individual’s reproduction 
is given by ),( tiR :  
 

        ),( tiR  =           1+
)(2

)(*)(
ts

tfif −
    if 0)( ≠ts     (6) 

        ),( tiR  =           1     if 0)( =ts  

Where ),( tiR is the expected value for each individual, )(if  is the fitness of the 
individual i , )(* tf is the average fitness of population and )(ts is the population 
standard deviation.  
 

 
3.- SIMULATION RESULTS  
 

Each genetic model is run one time for every stock or index in the sample over the 
training period. Then, the best rule (the best crossing moving average) is selected from 
each one of the models for every stock (see table 1) and applied to the out-sample 
period. To analyse the forecast ability of the rules selected by the genetic models we 
compute the accumulated returns and standard deviations obtained by the models in the 
out-sample period as reported in table 2. T-test comparing buy-and-hold returns and 
genetic strategy returns are reported in the last row of table 2.  
 

Accumulated returns before and after transaction cost are show in table 2. However, as 
can be seem from the table, returns (before transaction cost) obtained by the moving 
averages optimised by the genetic models are quite below the buy-and-hold return, with 
statistical significance (at 95%) for the genetic models 1 and 2. Such results are even 
worse when the risk factor is taken into account, as the risk level supported by the 
genetic strategies is almost the same that for the buy-and-hold strategy, as can be seen 
computing the Sharpe ratios. Taking into account transaction cost, return obtained by 
three of the four models is below return from buy and hold strategy. This results show 
the lack of forecast ability of moving average indicators for the Spanish market. 
 

 

                                                 
3 Goldberg (1989) points out that the regulation of reproduction is especially important in small 
population (50-100 individuals), fixing the number of offsprings between 1,2 and 2 for the best individual 
of the generation.   
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Table 1: Results from training 
 
This table reports the length of the moving averages (short and long) chosen by each of 
the four genetic algorithm models for every stock in the sample. Figures in bold face 
denote the rules that do not follow the guidelines of technical analysis theory, but the 
contrary. Technical analysis rules point out large positions (buy) when the shorter 
moving average is above the longer, and  short positions (sell) in the opposite situation. 
When both moving averages are built with 1 session, the system follows the strategy of 
buy and hold. If only one of the moving averages is built with 1 session, the rule is the 
crossing of one moving average with the stock price. If both moving averages are built 
with the same length, then the rule is the crossing of the moving average of this length 
with the stock price.  
 

Stocks  Model 1 Model 2 Model 3 Model 4 

ACESA 10 113 15 112 17 19 16 106 
ACERINOX 2 32 59 46 5 20 2 9 
BBV 52 22 43 9 44 21 33 9 
BANKINTER 25 58 18 89 1 2 31 77 
CANTABRICO 17 24 13 100 22 78 16 21 
CUBIERTAS 11 25 1 36 2 13 9 29 
DRAGADOS 1 51 1 51 28 31 1 47 
ENDESA 11 75 14 76 8 84 15 73 
ENCE 4 22 16 27 16 24 1 5 
ERZ 3 127 6 126 6 119 6 75 
FOCSA 26 42 19 55 63 62 30 37 
GESA 28 60 45 51 43 54 9 96 
IBERDROLA 6 105 2 14 20 41 25 32 
IBEX-35 11 62 1 3 2 3 1 97 
IGE 16 17 1 21 5 19 14 16 
METROVACESA 10 38 11 26 14 22 13 39 
POPULAR 45 118 45 97 11 16 38 38 
REPSOL 53 51 28 103 17 105 1 5 
B. SANTANDER 1 2 3 13 35 25 1 12 
SEVILLANA 2 65 4 70 15 50 9 19 
TABACALERA 23 54 1 4 62 66 19 58 
TELEFÓNICA c m 48 48 15 153 44 212 
UNIÓN FENOSA 1 31 2 15 1 32 1 31 
VALLEHERMOSO  61 102 3 17 1 5 6 18 
VISCOFÁN 13 79 10 80 6 85 9 85 
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Table 2: Results (out-sample period)  
  r_b&h st_d_b&h r_m1 st_d_m1 r_m1cost r_m2 st_d_m2 r_m2cost r_m3 st_d_m3 r_m3cost r_m4 st_d_m4 r_m4cost 
ACESA 0.12766 0.01421 -0.24358 0.01419 -0.25695 -0.34460 0.01414 -0.35635 -0.35596 0.01413 -0.41629 -0.29917 0.01416 -0.31174 
ACERINOX -0.01601 0.01907 0.12134 0.01906 0.03271 -0.00437 0.01907 -0.02598 0.27933 0.01903 0.22195 0.30895 0.01902 0.16330 
BBV 0.39143 0.00931 -0.07927 0.00940 -0.09586 -0.11132 0.00940 -0.13419 -0.08926 0.00940 -0.11288 -0.13483 0.00939 -0.15711 
BANKINTER 0.24189 0.01032 -0.15264 0.01035 -0.17771 0.04331 0.01036 0.02050 0.29681 0.01031 -0.16975 -0.17557 0.01034 -0.20003 
CANTABRICO 0.07612 0.01043 -0.10217 0.01043 -0.15960 -0.19386 0.01041 -0.20828 -0.27261 0.01037 -0.28572 -0.04347 0.01044 -0.11162 
CUBIERTAS -0.10714 0.01987 -0.41264 0.01978 -0.43909 -0.13893 0.01987 -0.20995 -0.01156 0.01987 -0.09991 -0.09332 0.01987 -0.12707 
DRAGADOS -0.05851 0.01698 -0.15830 0.01697 -0.21213 -0.15830 0.01697 -0.21213 0.01878 0.01698 -0.03098 -0.03421 0.01698 -0.10301 
ENDESA 0.36102 0.01322 -0.05537 0.01329 -0.07966 -0.15658 0.01328 -0.17834 0.10896 0.01328 0.08930 -0.04623 0.01329 -0.06331 
ENCE -0.41772 0.02379 -0.07270 0.02386 -0.12213 0.64738 0.02376 0.59256 0.89304 0.02370 0.80807 1.76706 0.02347 1.25400 
ERZ 0.26145 0.01069 0.18235 0.01071 0.16155 0.06842 0.01073 0.04936 0.18848 0.01071 0.16750 0.25873 0.01069 0.23628 
FOCSA -0.15033 0.01824 0.00111 0.01825 -0.01698 0.15095 0.01823 0.13008 -0.06610 0.01825 -0.12239 -0.05407 0.01036 -0.09694 
GESA 0.11020 0.01015 -0.13508 0.01014 -0.15734 -0.21453 0.01012 -0.24078 -0.19738 0.01012 -0.22429 -0.20444 0.01012 -0.22494 
IBERDROLA 0.45977 0.01407 0.35498 0.01410 0.34161 -0.08501 0.01416 -0.19694 0.09744 0.01036 0.07804 0.47695 0.01406 0.43909 
IBEX-35 0.25776 0.00846 0.11003 0.00851 0.09022 -0.00020 0.00852 -0.30131 -0.16206 0.00849 -0.41468 0.21518 0.00848 0.19344 
IGE 0.20466 0.00757 0.06650 0.00760 -0.03321 0.08422 0.00760 -0.02491 0.06651 0.00760 0.01034 0.03399 0.00760 -0.05889 
METROVACESA 0.09499 0.01212 -0.12213 0.01212 -0.15174 -0.16504 0.01211 -0.20273 -0.06825 0.01212 -0.12444 -0.08529 0.01212 -0.11596 
POPULAR 0.22448 0.01228 0.28588 0.01227 0.27831 0.05322 0.01231 0.03872 0.19038 0.01229 0.10080 0.01013 0.01232 -0.06183 
REPSOL 0.10050 0.01053 0.05189 0.01053 0.03327 0.00812 0.01054 -0.00219 0.08316 0.01053 0.07240 0.23468 0.01050 -0.02267 
B. SANTANDER 0.26850 0.01302 0.32353 0.01300 -0.17563 -0.33948 0.01296 -0.40830 -0.15459 0.01304 -0.17637 0.01692 0.01305 -0.00614 
SEVILLANA 0.65909 0.01291 0.32049 0.01303 0.27621 0.31492 0.01303 0.28081 0.60333 0.01293 0.55005 0.58951 0.01294 0.53626 
TABACALERA 0.32420 0.01641 0.33849 0.01641 0.32515 0.25744 0.01642 -0.04825 -0.14150 0.01645 -0.16373 0.29183 0.01642 0.27882 
TELEFÓNICA 0.38226 0.01119 0.38226 0.01119 0.38226 0.29262 0.01122 0.22939 0.20206 0.01124 0.17593 0.06810 0.01127 0.02420 
UNIÓN FENOSA 0.42593 0.01229 0.10266 0.01237 -0.00834 0.18411 0.01236 0.10024 0.09254 0.01238 -0.01753 0.10266 0.01237 -0.00834 
VALLEHERMOSO  -0.02857 0.01564 -0.30067 0.01558 -0.31319 0.03978 0.01563 -0.06114 0.67117 0.01548 0.34358 0.12938 0.01562 0.05252 
VISCOFÁN 0.09348 0.02449 0.12522 0.02449 0.09649 0.06604 0.02449 0.03005 -0.05436 0.02450 -0.07889 0.03807 0.02449 0.01122 
Average 0.17148 0.01389 0.03729 0.01390 -0.01527 0.03372 0.01391 -0.04913 0.08873 0.01374 0.00720 0.13486 0.01357 0.06078 
t-test      2.113*   2.958* 2.503*   3.548* 1.112   2.288* 0.398   1.408 
r_b&h, r_m1, r_m2, r_m3, and r_m4 are the returns before transaction costs for the buy-and-hold strategy and the genetic models strategies 
r_m1cost, r_m2cost, r_m3cost, and r_m4cost are the returns after transaction costs for the genetic models strategies 
st_d_b&h, st_d_m1, st_d_m2, st_d_m3, and st_d_m4 are  the standar deviations for the buy-and-hold strategy and the genetic models strategies 
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4.- CONCLUDING REMARKS  
 
Previous studies have reported mixed results with regard to the success of technical 
trading rules. Studies that provide positive evidence that simple technical trading rules 
generate valuable signals are [Brock, Lakonishok and Lebaron (1992), Karjalainen, R.E. 
(1994), Bessembinder and Chan (1995), Mills (1997), and Fernandez et al. (1999)]. 
Studies rejecting the utility of technical trading rules are [Hudson et al. (1996)  or Allen, 
F. and Karjalainen R.E. (1999)].  
 

Most of the literature ignore the issue of parameter optimisation, thus generating 
concerns over data-snooping. A recent body of work addressing the criticism mentioned 
above has applied evolutionary algorithms to the parameter optimisation of trading rules 
[see Karjalainen (1994) and Allen and Karjalainen (1999) for genetic programming 
models of trading and Fernandez et al (2001) and Nuñez-Letamendia (2002) for genetic 
algorithms models]. The basic approach of these studies is to choose trading rules based 
on an genetic optimisation procedure using in-sample-data and then testing the 
performance of these rules in out-of-the-sample data.  
 

Following that line, this paper has investigated the profitability of the most popular 
technical rule – the moving average – over the Madrid Stock Exchange by utilizing 
genetic algorithms to optimise the rule in the in-sample period (May 1990- May 1995) 
and applying it to the out-sample period (May 1995 – May 1996). We test the forecast 
ability of moving average rule over 25 stocks and indexes quoted at the Madrid Stock 
Market. We report the lack of utility, even before transaction costs, of this popular 
technical rule.  
  

To beat the market may require more complicated trading rules, or at least, less known 
rules: "If a rule is easy to find, it will probably appear as a glaring inefficiency in the 
market and will promptly be arbitraged away, thereby invalidating it. For example, this 
may be a reason for the poor returns of simple moving average models in the foreign 
exchange markets over the last 15 years". (Colin, "Genetic algorithms for financial 
modelling" in Deboeck, 1994, pag. 149). The analysis of more sophisticated technical 
strategies may be an interesting topic for future research.  
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