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Abstract 
We study delegated portfolio management when the manager's ability to
short-sell is restricted. Contrary to previous results, we show that under
moral hazard, linear performance-adjusted contracts do provide portfolio
managers with incentives to gather information. We find that the risk-
averse manager's effort is an increasing function of her share in the
portfolio's return. This result affects the risk-averse investor's choice of
contracts. Unlike previous results, the purely risk-sharing contract is now
shown to be suboptimal. Using numerical methods we show that under the
optimal linear contract, the manager's share in the portfolio return is higher
than what it is under a purely risk sharing contract. Additionally, this
deviation is shown to be: (i) increasing in the manager's risk aversion and
(ii) larger for tighter short-selling restrictions. As the constraint is relaxed
the deviation converges to zero. 
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1 Introduction

Investors delegate portfolio decisions to managers because of their alleged skill in
gathering superior information on movements in security prices. When the man-
ager’s research activity is not observed, the investor could face problems associated
with moral hazard. Then, it could be in the investor’s interest to provide the man-
ager with incentives to gather better information. In studying the nature of such
incentive contracts, past literature has assumed the manager’s portfolio choice to
be unbounded. Yet, we seldom observe environments where the manager’s portfolio
choice is totally “unrestricted.” Practices like borrowing money, margin purchases,
short-selling or investment in derivative securities are usually restricted. Our purpose
is to study the effect of such constraints on incentive provision.
We assume that the manager’s ability to short-sell is restricted and that investors

have to cope with moral hazard. Our primary interest is in the impact of short selling
restrictions on the power of incentives provided by linear symmetric contracts. We re-
port three main results. First (Corollary 2), linear performance-adjusted contracts do
provide managers with incentives for gathering better information. Second (Propo-
sition 4), we show that the manager’s share in the portfolio return is different from
that under the purely risk sharing contract, (we shall refer to the purely risk sharing
contract as the first best contract).1 Third, using numerical methods, we show that
the manager’s share in the optimal portfolio is higher than that under the first best
and decreases as we relax the leverage constraint. We also present some additional
results. In a scenario without moral hazard, but with short selling restrictions: (i)
under the optimal linear contract, the manager’s share in the portfolio is equal to
the one under the first best contract(Proposition 4); (ii) linear contracts dominate
quadratic contracts (Proposition 6, in Appendix A). With moral hazard and short
selling restrictions, numerical methods show that, quadratic contracts dominate linear
contracts only for certain parameter values (Table 2 in Appendix A).
We take restrictions on short selling as given. Almazán et al (2001) report that

70% of mutual funds explicitly state (in Form N-SAR handed to the SEC) that short
selling is not permitted. The authors , however, assert that these restrictions are
more than regulatory prohibitions. Hence, endogenizing short selling constraints may
be a valuable line for future research.
Our main focus is on the incentives provided by linear symmetric contracts. Such

contracts need not be optimal in the domain of all contracts and quadratic contracts
are known to perform better than linear contracts in certain environments. We com-

1A “first best” corresponds to the situation where there is no moral hazard, i.e. the manager’s
effort is observable and verifiable by a third party, and there is no restriction on short selling. The
optimal linear contract in such a scenario is purely risk sharing in nature. Hence, we call the purely
risk sharing contract the ’first best’. In doing so we slightly abuse terminology because, under
symmetric information, the contract specifies the manager’s level of effort in addition to the share
of portfolio returns.
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pare linear and quadratic contracts in Appendix A.2 There are two reasons for focusing
on linear contracts in the main text of the paper. First, from an institutional point
of view, the Security Exchange Commission (SEC) restricts compensation contracts
in the mutual fund industry to only linear symmetric contracts. Second, restrict-
ing our domain to symmetric linear contracts provides us with the very well known
“no-incentive” benchmark. When no restrictions on short-selling exist, Stoughton
(1993) and Admati and Pfleiderer (1997) have shown that linear (fulcrum) contracts
fail to affect the manager’s decision to gather better information. In other words,
the manager’s optimal effort choice is independent of the contract she receives from
the investor. As a consequence, the only role for the linear contract is to split risk
efficiently between the manager and the investor: a higher risk aversion of the for-
mer relative to the latter would then imply no performance adjustment component in
managers fees.
In contrast to the “no-incentive” result, our first result asserts that under moral

hazard and finite short-selling bounds, linear contracts do provide the manager with
incentives to gather better information. Both assumptions are necessary for this re-
sult. With moral hazard but no short-selling bounds, the no-incentive result prevails.
With short-selling constraints but no moral hazard, incentives for performance are
not required. Hence, as we show in Proposition 4, the first best split is optimal.
The intuition behind our first result is as follows. With no short selling constraints

the manager is able to undo the effects of incentives by appropriate modifications of
the portfolio. Hence, we get the “no incentive” result. With finite short selling
bounds, no matter how large they are, the manager anticipates that with positive
probability she shall not be able to form the portfolio of her choice. This leads
her to reduce effort in gathering better information. Under such circumstances, by
increasing the incentive fee the investor expands the manager’s portfolio set, thereby
partially undoing the effects imposed by short-selling bounds. This in turn, provides
her with incentives for spending more effort.
Given the investor’s utility function, the cost of increasing effort through linear

contracts may be too high. As a result, the investor may simply desire to share risk
through the first best sharing rule and ignore effort inducement. Our second result
rules out such behavior: the first best sharing rule is never optimal.
We are not able to derive closed form solutions for the optimal linear contract.3

Using numerical methods, we show that the manager’s share in the portfolio is higher
than in the first best. Importantly, this share converges to the first best level as

2We thank an anonymous referee for persuading us to carry out this exercise. We also show
that linear contracts outperform quadratic contracts under symmetric information and leverage
constraints. Deriving the form of optimal contract in this context could be of interest. The challenge
emanates from solving for fixed points when the domain of contracts is left unrestricted. Even if
the domain were to consist of only polynomial contracts, one cannot necessarily ensure continuity
in the manager’s best response function when returns to stocks are normally distributed.

3The optimal program of the investor requires that we integrate over a Chi-square distribution
of degree one. To our knowledge, such integration can only be be performed numerically.

2
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the bounds on short selling get relaxed. Thus, the “no-incentive” result is a special
case. This final result can be interpreted as follows. In the constrained scenario,
the performance adjustment fee plays an additional role beyond risk sharing, namely
effort inducement. When the short-selling bounds shrink (making the restriction
tighter) the volatility of the portfolio decreases as well since fewer “extreme” portfolios
are feasible. If the investor does not increase the performance adjustment fee the
manager will be under-exposed to management risk. As a consequence, effort will
also decrease. The risk sharing and the effort inducement arguments are aligned in
the same direction: the optimal incentive fee increases above the first best value.
This effect is enhanced by the manager’s risk-aversion: given a certain level of short-
selling, the (percentage) deviation from the first best share increases as the manager’s
risk-aversion augments.
The rest of the paper is organized as follows. Section 2 introduces the basics of

the model. We distinguish four possible scenarios, depending on the restrictions on
portfolio choice (constrained/unconstrained) and the observability of effort (public-
information/moral hazard). The optimal linear unconstrained contract under public-
information is termed the first best. The second best scenario is reserved for one
where there are no constraints on short selling but where the manager’s effort is not
observable. The third best scenario pertains to the one where constraints on short
selling are exogenously imposed and the manager’s effort is unobservable. Section
3 studies linear contracts. Here we study linear contracts without restrictions on
portfolio choice, both in the first best and second best scenarios. The same analysis
is repeated for constrained portfolio problems in Section 4. Section 4.1 presents
numerical results on the optimal linear contract under limited leverage, i.e. on the
third best contract. Linear and quadratic contracts are compared in Appendix A. All
proofs are provided in Appendix B.

2 The model

A typical fund will inform the customer that managers (who are involved in investment
research) are responsible for choosing each fund’s investments. Customers may also
be informed about how the managers are compensated. Given the information, the
customer decides how much to invest in the fund. In this paper we shall abstract
from the decision problem of the consumer. Instead, assuming that the interests of
the customer and the fund owner are the same, we shall focus on the determination
of the manager’s compensation scheme by the owner of the fund. Slightly abusing
terminology, we call the owner of the firm the investor.
Let the manager and the investor have preferences represented by exponential

utility functions. Throughout the paper we will use a > 0 (b > 0) to denote the
manager (investor) as well as her (his) absolute risk aversion coefficient.
The manager’s investment opportunity set consists of two assets: a risky asset

3
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with net return x̃ and a riskless bond. Assume that x̃ is distributed as a standard
normal variable. The distribution of the risky asset return and the return on the
bond are public information. As in Heinkel and Stoughton (1994), the bond is taken
as the benchmark portfolio against which the returns on the manager’s portfolio are
measured. The investment horizon is one period. At the beginning of the period, the
investor transfers one unit of wealth to the manager who also receives a compensation
contract from the investor. This contract sets the management fee as a percentage
of the wealth under management and consists of two components: a fixed flat fee,
denoted by F , and a performance adjustment fee. The performance adjustment rate
is calculated as a percentage α of the portfolio’s excess return over the net return of
the benchmark (which by assumption is the bond). Denote such a contract as (α, F ).
Normalize the net return of the bond to zero. If the manager refuses the contract the
game ends and she receives her reservation value (normalized to −1). If she accepts
the contract, she puts in some effort e which results in a signal y. The signal y is a
realization of random variable ỹ.4 After observing y, the manager forms a portfolio
{θ(y), 1− θ(y)} where θ(y) and 1− θ(y) respectively denote the proportions invested
by the manager in the risky asset and the bond. Conditional on the contract (α, F )
and θ(y), the wealth of the manager and the investor are random outcomes W̃a(y)

and W̃b(y) with associated utilities Ua
³
W̃a

´
and Ub

³
W̃b

´
.

The variable ỹ is partially correlated with the stock’s return, ỹ = x̃ + ²̃ with ²̃
the noise term. The return on the risky asset and the noise term are assumed to
be uncorrelated. Let ²̃ ∼ N (0,σ2), with σ2 < ∞ such that higher σ2 implies a less
precise signal.
Recall that the manager observes the signal after putting in her privately observed

effort. The amount of effort is assumed to affect the precision of the signal. More
concretely we assume that σ2 = e−1. Therefore, the signal’s precision, P (e) = e

1+e
, is

an increasing and concave function of effort. On the other hand, effort is costly for
the manager. With constant absolute risk aversion a, let V (a, e)/a be the monetary
value of the manager’s disutility of effort e.
After receiving the signal the manager updates her beliefs about the distribution

of the risky asset, such that x̃ | y ∼ N ¡ e
1+e
y, 1

1+e

¢
.5 Given these updated beliefs,

the manager chooses θ(y). For any (α, F ) and θ, the conditional (net) wealth of the
manager and the investor can be written as, respectively:

W̃a(y) = F + α θ x̃ |y, (1)

W̃b(y) = (1− α) θ x̃ |y − F. (2)

The utilities of the investor and the portfolio manager are given by, respectively,

4We will follow the standard notation whereby a symbol with a tilde on top will represent the
variable and the same symbol, without a tilde, its realization.

5The vertical bar reads as “conditional to.”
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Ua
³
W̃a

´
= − exp(−aW̃a + V (a, e)) and Ub

³
W̃b

´
= − exp(−bW̃b). We assume the

function V (a, e) is continuous and twice differentiable, with continuous derivatives.
Moreover, the function is assumed to satisfy:6

Assumption (S1) V (a, 0) = V 0(a, 0) = 0

Assumption (S2) V 0(a, e) > 0 for all e > 0

Assumption (S3) V 00(a,e)e
V 0(a,e) > P (e) for all e > 0

Assumptions (S1) and (S2) are standard in the literature. Assumption (S3) sets
an upper bound to the signal’s precision: the marginal cost of effort must increase fast
enough. This will guarantee the existence of an optimal effort level for the manager.
This assumption discards, for instance, linear disutility functions. Any quadratic
function of effort that satisfies (S1) and (S2) will verify (S3) as well.

3 Unconstrained linear contracts

Assume that the manager’s effort decision is publicly observable and let the investor’s
choice be restricted to linear contracts. Given the negative exponential utility func-
tions for both the investor and the manager, the Pareto efficient sharing rules are
linear -see Wilson (1968). Hence, each individual receives the fraction of the risky
asset equal to his risk tolerance divided by the aggregate social risk tolerance. We
will denote this result the first best outcome, α

FB
= 1

1+r
, where r = a

b
represents the

manager’s “relative” (to the investor) risk aversion.
To derive the non-incentive result, assume that the signal is observed only by the

manager who decides, privately, how much effort to put in. Proceeding by backward
induction, we first solve the manager’s optimal portfolio problem. When the manager
is unconstrained in her portfolio choice, she can select any θ from the real line <.
Given some effort choice e and some signal realization y, the manager chooses θ(y)

to maximize her conditional expected utility of wealth E
h
Ua
³
W̃a(y)

´i
subject to

θ(y) ∈ <. Solving this we get:7

θ(y) =
e

aα
y. (3)

Having solved for the manager’s optimal portfolio problem, we now need to solve
for her effort (previous stage) decision. Given (3), the manager forms her indi-
rect unconditional utility function by taking expectations over y. This is written
as E

h
Ua
³
W̃a(e)

´i
= −exp (−aF + V (a, e))× g(e), where

6Prime (0) and double prime (00) denote, respectively, first and second derivative with respect to
effort.

7See Stoughton (1993).
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g(e) =

µ
1

1 + e

¶1/2
. (4)

Notice that the manager’s expected utility is independent of α. The expected utility
maximizing effort solves the first order condition:

V 0(a, e
SB
) =

1

2(1 + e
SB
)
. (5)

Assumptions (S1)-(S3) guarantee the existence of e
SB
> 0 satisfying equation (5).

Note that the optimal effort in the second best scenario (which we call the second
best effort) is a function only of the manager’s risk aversion coefficient; in particular,
it does not depend on α or F . This, in essence, is the non-incentive result.
Finally, in the first stage, the investor offers the manager a contract (α, F ) that

maximizes her expected utility subject to the manager’s incentive compatibility con-
straint, (5), and the manager’s participation constraint. Since e

SB
is unique with

respect to (α, F ), we can write the investor’s utility as a function of e
SB
and solve

for (α
SB
, F

SB
) ∈ argmaxα,F E

h
Ub
³
W̃b(α, F, eSB)

´i
subject to the participation con-

straint E
h
Ua
³
W̃a(eSB)

´i
≥ −1.

We define the functions m(α) ≡ 1−α
rα

and M(α) ≡ m(α) (2−m(α)). These
functions will also help in later analysis. Let us denote Φ(x) =

R x
0
φ(s) ds, with

φ(s) = 1√
2π
s−1/2 exp(−s/2) when s > 0; s = 0 otherwise. Φ(·) is the cumulative

probability function of a Chi-square variable with one degree of freedom and φ(·) is
the corresponding density function.
With these definitions, Appendix B shows that the investor’s expected utility can

be written as

E
h
Ub

³
W̃b(α, F, e)

´i
= −exp(aF/r)

µ
1

1 + eM(α)

¶1/2
. (6)

Since the manager’s expected utility (4) is independent of α, the optimal contract
satisfies the first order condition ∂

∂α
M(α

SB
) = 0. The function M(α) is concave for

all α < 3/2(1 + r), convex otherwise. Thus, given the later equation, it follows that
α
SB
= 1

1+r
is the (unique) solution to the investor’s problem. The reader can verify

that this result corresponds to the first best share of risk. In the second best, unre-
stricted scenario, the first best split prevails in spite of the asymmetry in information.
Finally note that when b tends to zero α

SB
tends to zero and hence the performance

adjustment fee (captured by α) has no role.

6
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Replacing α
SB
= α

FB
in (6) and provided that the manager’s participation con-

straint is binding in the optimum, the investor’s expected utility in the unconstrained
linear scenario will be given by:

E
h
Ub
³
W̃b(e)

´i
= −exp(V (a, e)/r)

µ
1

1 + e

¶a+b
2a

. (7)

Maximizing the latter expression with respect to effort, we obtain the first best
effort condition:

V 0(a, e
FB
) = (1 + r)

1

2(1 + e
FB
)
. (8)

Comparing (5) with condition (8), it follows that the second best effort is always
smaller than the first best effort.

4 Constrained linear contracts

We now study the effort and portfolio decisions of a manager who, unlike in the pre-
vious section, is restricted in her portfolio choice. We will distinguish between a con-
strained public-information scenario (where the manager’s effort decision is publicly
observable) and a third best scenario, where the manager’s effort decision is private.
In this scenario we will also analyze the effect of the restriction on the investor’s
optimal linear contract problem.
The restriction, that we call “bounded short-selling” [BSS], can be expressed as

|θ| ≤ κ, 1 ≤ κ < ∞. The symmetry with respect to κ is convenient in order to
simplify the algebra.8 Note that κ can be any large number. All we require is that it
should not be infinite.
Recall that θ and 1 − θ denote, respectively, the proportions invested by the

manager in the risky asset and the bond. Also, in our model, the bond is taken as
the benchmark portfolio. So, given the contract (α, F ), the [BSS] restriction can be
interpreted as a constraint on the manager’s “personal” portfolio, {αθ,α(1− θ)}, as
well as a constraint on the portfolio leverage. For instance, if κ = 1, [BSS] implies
that the maximum short-selling allowed is 100% of the initial wealth (θ ≥ −1).
Symmetrically, it also implies that 1−θ ≤ 2. Hence, the maximum amount of money
the manager is allowed to hold in the benchmark is 2α (in our model, the initial
wealth is normalized to 1 unit).
We start by providing an intuitive answer to the following question: How does

our restriction influence the manager’s effort decision? Increasing effort expenditure

8Note that ỹ has a normal distribution. None of our results depends, qualitatively, on this
assumption.
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implies that the signal’s precision becomes sharper. However, introducing [BSS] “dis-
torts” the manager’s portfolio decision: for certain signals, the manager may not be
able to form the portfolio of her choice. From an ex-ante perspective, the net effect
of this trade-off results in a decrease in the marginal utility of effort as compared to
the case where [BSS] does not hold. As a consequence, α now plays an additional
role: by increasing α the investor can “marginally” relax the restriction imposed by
[BSS]. Hence, a higher α induces the manager to exert higher effort.
Based on the above intuition, it follows that the manager’s optimal effort under

[BSS] will be: (i) smaller than e
SB
for all α and (ii) increasing in α. Also, the

distortion between the two effort levels should be inversely related to the manager’s
risk aversion: i.e. the larger is a the smaller is the effect of [BSS] on the manager’s
effort decision. In the limit, when either κ or a tend to infinity, the effect of the
restriction should vanish and we should return to the second best. In what follows,
we formalize this intuition.
As in Section 2, we proceed by backward induction. The manager’s optimal

portfolio solves the following “constrained” problem θ(y) = argmaxθ E
h
Ua
³
W̃a(y)

´i
subject to κ ≥ θ ≥ −κ. Let λl ≥ 0 (lower bound) and λu ≥ 0 (upper bound) denote
the corresponding Lagrangian multipliers, such that, at the optimal (θ+κ)λl = 0 and
(θ − κ)λu = 0.
Conditional on the signal realization y, and a given level of effort e, there are three

possible solutions: (i) If λu = 0 and λl = − e
1+e

α
¡
y + κaα

e

¢
> 0, then short-selling is

at the maximum and θ(y) = −κ; (ii) if λl = 0 and λu =
e
1+e

α
¡
y − κaα

e

¢
> 0, then

leverage is at the maximum and θ(y) = κ. Otherwise, λl = λu = 0, and the optimal
portfolio is θ(y) = e

aα
y.

The latter, “interior” solution coincides with the manager’s optimal portfolio (3)
in the unconstrained problem. The dollar amount, αθ, invested in the risky asset
by the manager in her “personal” portfolio is independent of α. In the “corner”
solutions the dollar amount invested (ακ) or sold short (−ακ) in the risky asset is,
in absolute value, increasing in α: the manager will “behave” indeed as an investor
with decreasing absolute risk aversion.
Writing the optimal portfolio as a function of the signal y, we have:

θ(y) =


−κ if y < −κaα

e

e
aα
y if | y| ≤κaα

e

κ if y >κaα
e
.

(9)

We are now in a position to solve for the manager’ choice of effort. Let us first
investigate the manager’s utility of effort. Recall that the manager had accepted some
contract (α, F ) in the beginning of the game. To decide on how much effort to put in
she uses the knowledge that for each y that she observes in the future, she will form

8

IE Working Papers                                   DF8-116-I                        10-01-2005



the portfolio θ(y). Replacing the optimal portfolio θ(y) in the manager’s conditional
expected utility function and taking expectations over y we arrive at the manager’s
unconditional expected utility function.

Proposition 1 Given the contract (α, F ) and the constraint κ < ∞, the expected
utility function of the risk-averse manager is

E
h
Ua
³
W̃a(α, F, e |κ)

´i
= −exp(−aF + V (a, e))× gκ(e |α), with gκ(e |α) =

µ
1

1 + e

¶1/2
×Φ

µ
(κaα)2

e

¶
+ exp

µ
(κaα)2

2

¶
×
µ
1− Φ

µ
(κaα)2

e
(1 + e)

¶¶
(10)

a decreasing and convex function of effort e.

Equation (10) confirms the intuition presented at the beginning of this section.
The unconditional expected utility of the constrained manager (i.e. after introducing
[BSS]) can be expressed as the weighted sum of two utility functions.9 The first
function corresponds to the “interior” expected utility in (4) where the manager is
not affected by the constraint. The second function is the manager’s expected utility
when the constraint is binding. In that case the manager sets |θ| = κ. Note that,
unlike the unconstrained case, gκ(e |α) depends on α. So, an interesting question is:
how will changes in α affect the manager’s utility? Corollary 1 answers this question.

Corollary 1 Given some contract (α, F ) and the constraint κ < ∞, the manager’s
unconditional expected utility is increasing in α. In the limit, when either the con-
straint, κ, or the manager’s risk aversion coefficient, a, tend to infinity, the marginal
utility of α is zero.

Note that the second part of the corollary derives the no-incentive result as a
special case of our model. To see the intuition behind the corollary, let us rewrite the
constraint [BSS], given (3), as follows:

|y| e ≤ κaα. (11)

The left-hand term represents the risky asset’s conditional mean return (absolute
value) weighted by its precision. The right-hand side term is the short-selling limit,
κ, multiplied by the manager’s risk aversion coefficient weighed by α. Clearly, as long
as |y| < κaα/e, the manager’s optimal decision will not be affected by [BSS]. In this

9The disutility function, V (a, e), affects both terms. This is because the effort decision is taken
ex-ante, before the signal is observed. Note that the weights are not constant: they are a function
of effort themselves.

9
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case, the marginal utility of α is zero and the manager’s effort decision is independent
of the contract. However, when the signal exceeds either bound (i.e. for “very good”
or “very bad” signals) the manager would want to invest in her portfolio more than
she is allowed to. Clearly, such a distorting effect will diminish as α and/or the risk
aversion a increase. So, for all a <∞, the manager’s marginal utility of α is positive.
In the limit, when the right-hand side term in (11) tends to infinity the restriction
vanishes and (10) converges towards the unconstrained utility function (4).
We now consider the manager’s choice of effort. The manager chooses effort to

maximizes her unconditional expected utility. Given (α, F ), the manager’s (third
best) effort solves:

e
TB
(α) = argmax

e≥0
−exp(−aF + V (a, e))× gκ(e |α). (12)

We are interested in the properties of the third best effort. Note that, unlike in the
unconstrained second best case, effort now depends on α. Corollary 1 had shown that
the utility of the constrained manager increases in α: by increasing the performance
adjustment fee in the contract, the investor allows the manager to get “marginally”
closer to her optimal unconstrained personal portfolio. The investor can now exploit
this phenomenon to influence the manager’s effort choice. In fact, effort turns out to
be an increasing function of α.
The intuition works as follows. Recall that the manager decides how much effort

to exert after accepting the contract (α, F ) and before receiving the signal. When the
manager is unconstrained then, for any signal y, the absolute value of the manager’s
unconstrained portfolio (3) is increasing in effort. This marginal benefit is traded
off against the inherent marginal disutility of effort to get at the second best level
of effort. However, when the manager is constrained, equation (11) tells us that by
exerting more effort the manager could actually “enhance” the distortion induced by
[BSS]. Therefore, the marginal utility of effort and (hence) effort is lower than in the
second best case.

Proposition 2 Given assumptions (S1)-(S3), the contract (α, F ) and the constraint
κ < ∞, there exists a unique e

TB
(α) ≥ 0 that maximizes the manager’s expected

utility. Moreover, e
SB
> e

TB
(α) for all α ∈ [0, 1]. Both are equal, in the limit, when

either the constraint, κ, or the manager’s risk aversion coefficient, a, tend to infinity.

Now, following up with the argument in (11), a contract with a higher α marginally
enlarges the manager’s personal portfolio opportunity set: certain portfolios that were
not feasible before turn now to be feasible. As a consequence, the marginal utility
of effort increases. Thus, the optimal effort put by the manager is higher. In other
words, the third best effort moves towards the second best.

Corollary 2 The manager’s effort e
TB
(α) is a continuous and differentiable function.

Moreover, it is increasing in α.
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We now turn now to the investor’s (first stage) problem. First, we introduce the in-
vestor’s unconditional utility function when the manager faces [BSS]. The constrained
manager solves the restricted problem in Section 4 and her optimal portfolio is (9).

Given (2), the investor’s conditional utility function E
h
Ub
³
W̃b(y |κ)

´i
can be written

as a function of m(α) and M(α) defined in Section 3. Following the same procedure
we used to derive the manager’s unconditional expected utility function, we arrive at
the investors’s expected utility function. It is stated in the following proposition.

Proposition 3 Under [BSS], for a given contract (α, F ), the expected utility function
of the risk-averse investor is E

h
Ub
³
W̃b(α, F, e |κ)

´i
= −exp(aF/r)× fκ(α, e), with

fκ(α, e) =

µ
1

1 + eM(α)

¶1/2
×Φ

µ
(κaα)2

e

1 + eM(α)

1 + e

¶
+ (13)

exp
µ
(κaαm(α))2

2

¶
×
µ
1− Φ

µ
(κaα)2

e

(1 + em(α))2

1 + e

¶¶
.

After deriving the close-from solution to the investor’s expected utility, we want
to investigate how the presence of portfolio constraints and moral hazard affects
the optimal linear contract. Assume first that the manager’s effort decision were
observable. In this case the investor maximizes his expected utility with respect to α
and effort subject to the participation constraint −exp(−aF + V (a, e))× gκ(e |α) ≥
−1. Clearly, effort is not a function of F . This, along with the facts that the left-
hand side is increasing in F and the investor’s utility is decreasing in F , implies that
under the optimal contract the participation constraint is binding. So, the investor’s
problem is reduced to finding the optimal split and effort that maximize

E
h
Ub
³
W̃b(α, e |κ)

´i
= −exp(V (a, e)/r)× gκ(e |α)1/r × fκ(α, e). (14)

On the other hand, when the manager’s effort decision is not observable by the
investor, the third best problem consists in finding the optimal split α

TB
that maxi-

mizes (14) subject to the manager’s optimal effort condition (12). Note that, due to
first order condition (B7) in the Appendix B, (12) is uniquely solvable in terms of α.
Despite this simplification, it is difficult to find a closed form solution for the

optimal linear contract. Yet, we can still show that under [BSS] and in the absence
of moral hazard, the first best risk-share is still optimal, consistently with the result
in Haugen and Taylor (1987). On the contrary, in the presence of moral hazard, the
optimal α

TB
is no longer equal to α

FB
. This is to be expected because under [BSS]

α plays an additional role over risk-sharing. As in most moral hazard problems,
efficiency in risk allocation has to be traded off against effort inducement. These
results are summarized in the following proposition.
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Proposition 4 When the effort decision is public information, the first best risk
share, α

FB
, is optimal under [BSS]. Moreover, for any finite κ, the investor’s optimal

effort choice is smaller than the first best effort. When κ → ∞ both levels of effort
coincide.
When the effort decision is not observable by the investor, the first best risk share,

α
FB
, is not optimal under [BSS].

4.1 A numerical solution to the linear third best contract

As mentioned in the previous section, it is difficult to solve analytically for the optimal
contract. In this section we present a numerical solution for the third best contract.
Our interest will pertain to the optimal third best share, α

TB
. We assume a quadratic

disutility function of effort, V (a, e) = a e2. Exercises will be carried out by setting
the investor’s risk-tolerance coefficient (1/b) to 24. We will consider four different
values for the manager’s risk-tolerance coefficient 1/a = {3, 8, 15, 24}. We will vary
the short-selling/leverage constraint, κ, through 10 integer values, from 1 (tightest
restriction, no leverage) through 10 (weakest restriction).
Given the disutility function, condition (5) implies that the second best effort of

a manager with risk-tolerance coefficient 1/a is e
SB
(1/a) = 1

2

³p
1 + 1/a− 1

´
. Thus,

for the four different values of the risk tolerance coefficient under study we obtain the
corresponding values of e

SB
(1/a) = {1/2, 1, 3/2, 2}. Note that the second best effort

increases with the manager’s risk tolerance.10

For each κ, the algorithm creates a grid of 99 values of α from 0.01 through
0.99. Condition (B7) in the Appendix B is solved for each pair (α,κ). That gives a
numerical value of e

TB
for each pair (α,κ). The resulting matrices of third best efforts

(which we do not report) confirm the predictions of Proposition 2 and Corollary 2:
for all risk-aversion coefficients and all leverage bounds, the third best effort is (i)
smaller than the corresponding second best effort and (ii) increasing in α.
For each κ, the investor’s expected utility (14) is evaluated across α. Note that e

TB

and F
TB
as functions of α are implicitly taken into account in these calculations (the

latter is a function of α due to the fact that the participation constraint is binding).
Figure 1 plots the investor’s expected utility function as a function of α for four values
of κ when 1/a = 1/b = 8. In all cases, the investor’s expected utility as a function of
α is concave. In such a case, the proof of Proposition 4 implies that α

TB
> α

FB
.

The first row within each panel in Table 1 reports the values of α
TB
(1/a, 1/b)

which maximize the investor’s expected utility for 1/b = 24, 1/a = {3, 8, 15, 24}
and κ = 1, ..., 10. In all cases, the figures illustrate an important numerical result:

10The region of “acceptable” relative risk aversion coefficients varies from source to source -see
Mehra and Prescott (1985). Our manager’s expected relative risk aversion coefficient is defined as
her absolute risk aversion coefficient a times the manager’s unconditional expected portfolio wealth,
Ey(αθx̃(y)) =

e
a . Thus, the values of a are chosen so as to yield eSB(1/a) ∈ [1/2, 2].
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α
TB
> α

FB
in the constrained scenario. This, as mentioned earlier is a consequence

of the concavity of the investor’s utility function. Interestingly, as κ increases (i.e.,
the constraint is relaxed) α

TB
monotonically converges to α

FB
.

The relationship between the manager’s risk-aversion and ∆α/α = αTB−αFB
αFB

, for
different κs, is reported in the second row of each panel in Table 1. We see that,
for each κ, the difference in percentage is higher for higher values of the manager’s
risk-aversion. The difference can be very dramatic: it ranges from over 280% for
(1/a = 3,κ = 1) to 20% for (1/a = 24,κ = 10).
These results suggest that benchmarked contracts may play a significant role in

providing incentives to managers for exerting effort. When the short-selling bounds
decrease (making the restriction tighter) the volatility of the portfolio decreases as
well since fewer extreme portfolios are feasible. If the investor does not increase the
performance adjustment fee the manager will be under-exposed to active management
risk. As a consequence, effort will also decrease. The risk sharing and the effort
inducement arguments are aligned in the same direction: the optimal performance
adjustment fee increases. The change in α due to the incentive role is more visible the
smaller the manager’s risk tolerance because α

FB
in that case is relatively smaller.

The third and fourth rows of each panel in Table 1 report the percentage differ-
ence in effort, ∆e/e = e

TB
(α
TB

)−e
TB

(α
FB

)

e
TB

(α
FB

)
, and certainty equivalent wealth, ∆C/C =

C
TB

(α
TB

)−C
TB

(α
FB

)

C
TB

(α
FB

)
, in the constrained scenario.11 Hence, the ratio ∆C/C, can be

interpreted as the net return (on the end-of-period wealth C
TB
(α

FB
)) that would

compensate the investor for the lower utility of the suboptimal split, α
FB
, in the

third best scenario.
The last column in Table 1 represents very relaxed constraints (κ = 10). Even

here,∆e/e is around 30% for the most risk averse manager. In all cases∆e/e decreases
with the manager’s risk tolerance. An analogous result follows when we study the
difference in effort across κ.
With respect to the percentage change in the certainty equivalent wealth, we

see that the potential “efficiency” loss that arises from compensating the manager
through the suboptimal α

FB
is almost negligible when the manager is sufficiently

risk-tolerant (1/a = 24). However, in the standard situation where the manager is
assumed to be more risk-averse than the investor this loss can rise up to 9%, even
when κ = 10. Moreover, as κ gets tighter, this difference gets substantially enhanced.
Also note that in the reverse direction, when the constraint vanishes the third best
scenario converges into the unconstrained second best scenario.

11CTB (α) denotes the amount of end-of-period wealth that gives the constrained investor the same
utility as (14).
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Appendix A: Quadratic contracts

In this section, we study the quadratic contracts proposed by Bhattacharya and Pfleiderer (1985).

This type of contracts are interesting because they are known to elicit truthful information about

the signal observed by the portfolio manager. Hence, the portfolio can be formed by the investor.

Assume the investor offers the manager a quadratic contract (γ, F ). Given the contract, the

manager puts in effort and reports the signal to the investor. The investor incorporates this informa-

tion (x̃ |y) and decides the optimal portfolio θ(y). Hence, the conditional payoffs for the investor and
the manager are, respectively:12 W̃ q

a (y) = F −γ (x̃ |y −M)2 and W̃ q
b (y) = γ (x̃ |y −M)2−F +θx̃ |y,

where M(y) = e
1+ey is the reported conditional mean of the risky asset, x̃ |y.

According to Bhattacharya and Pfleiderer (1985), the manager’s expected utility under the

quadratic contract is given by

E
h
Ua

³
W̃ q
a

´i
= −exp(−aF + V (a, e))×

µ
1− 2aγ

1 + e

¶−1/2
. (A1)

12We will use the superscript q to distinguish between linear and quadratic contracts.
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In deriving this result, Assumption (S4): γ < 1+e
2a , is necessary to guarantee the convergence

of the expected utility integrals.13 This assumption will play an important role when we compare

linear and quadratic contracts.

From the appendix in Stoughton (1993) we obtain the investor’s conditional expected utility as

a function of his portfolio choice θ(y) and the conditional mean, M :

E
h
Ub

³
W̃ q
b (y)

´i
= −

µ
1 +

2bγ

1 + e

¶−1/2
× exp

µ
bF +

b2θ2

4(bγ + (1 + e)/2)
− bθM

¶
. (A2)

In the public-information case, the investor maximizes (A2) with respect to θ ∈ < and then

averages across the signal y. The result is the investor’s ex ante unconstrained expected utility14 as

a function of γ and e.

Under [BSS], the investor’s optimal portfolio solves for θq(y) = argmaxθ E
h
Ub

³
W̃ q
b (y)

´i
sub-

ject to κ ≥ θ ≥ −κ. Like in the linear case, let λl ≥ 0 (lower bound) and λu ≥ 0 (upper bound)
denote the corresponding Lagrangian multipliers, such that, at the optimal (θq + κ)λl = 0 and

(θq − κ)λu = 0.

Define now the function Q(γ) ≡
³
2aγ
1+e + r

´−1
. Notice that, given assumption (S4), Q(γ) >

α
FB for all γ. Conditional on y, there are three possible solutions: (i) If λu = 0 and λl =

− e
1+eb

³
y + κaQ(γ)

e

´
> 0, then short-selling is maximum and θq(y) = −κ; (ii) if λl = 0 and

λu =
e
1+eb

³
y − κaQ(γ)

e

´
> 0, the leverage is at the maximum and θq(y) = κ. Otherwise, λl = λu = 0,

and the optimal portfolio is θq(y) = e
aQ(γ)y.

Writing the optimal portfolio as a function of the signal y, we have:

θq(y) =



−κ if y < −κaQ(γ)
e

e
aQ(γ)y if |y| ≤κaQ(γ)

e

κ if y >κaQ(γ)
e .

(A3)

The reader can verify that the optimal constrained portfolio for linear contract, (9), and the

quadratic contract, (A3), coincide for α = Q(γ).

Plugging the portfolio choice (A3) in (A2) we obtain the following conditional expected utility

for the constrained investor:

13The authors claim (Section 4, page 15) that “the distribution of wealth obtained by the agent
when this inequality is violated is dominated by every distribution which can be obtained when the
inequality is observed.”
14Stoughton (1993), Proposition 2, equation (25).
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E
h
Ub

³
W̃ q
b (y)

´i
= −exp(aF/r)× (A4)

µ
1 +

2bγ

1 + e

¶−1/2
×



exp
³

b
aQ(γ)

e
1+eκaQ(γ)

³
y + κaQ(γ)

2e

´´
if y < −κaQ(γ)

e

exp
³
− b
aQ(γ)

e2

2(1+e)y
2
´

if | y| ≤ κaQ(γ)
e

exp
³
− b
aQ(γ)

e
(1+e)κaQ(γ)

³
y − κaQ(γ)

2e

´´
if y > κaQ(γ)

e .

We are now in a position to derive the investor’s unconditional expected utility as a function

of the contract (γ, F ) and effort. The result is presented in the following proposition whose proof

follows trivially given (A4) and the proof of Proposition 1 in the Appendix B.

Proposition 5 Under [BSS], for a given quadratic contract (γ, F ), the expected utility function

of the risk-averse investor is:

E
h
Ub

³
W̃ q
b (γ, F, e |κ)

´i
= −exp(aF/r)×

µ
1 +

2bγ

1 + e

¶−1/2
×
³
gκ(e |Q(γ))

´ b
aQ(γ)

.

Provided that the participation constraint is binding, the investor’s expected utility becomes a

function of γ and e:

E
h
Ub

³
W̃ q
b (γ, e |κ)

´i
= −exp(V (a, e)/r)×µ

1− 2aγ

1 + e

¶−b/(2a)
×
µ
1 +

2bγ

1 + e

¶−1/2
×
³
gκ(e |Q(γ))

´ b
aQ(γ)

. (A5)

At this point, we can compare linear and quadratic contracts when the manager’s effort decision

is observed by the investor, both under [BSS] and in the unconstrained case.

Proposition 6 Assume that the manager’s effort decision is observable by the investor. Then,

given (S4), the risk averse investor prefers the linear over the quadratic contract, both under [BSS]

and in the unconstrained case.

We are unable to analytically compare linear and quadratic contracts under moral hazard. So

we resort to numerical methods. We assume that quadratic contacts induce truthful revelation even

under [BSS]. Thus, in what follows, the investor’s utility under quadratic contracts should be thought

of as an upper bound. Furthermore, investor’s utility under linear contracts are derived under the

model where the manager (instead of the investor) forms the portfolio. The results would remain the

same if we were to allow the investor to form the portfolio, and the investor commits to the schedule

θ(y, e) which the manager forms in our model. This trivially induces truthful reporting of (y, e).

However, it may not be the optimal mechanism to induce truthful reporting under linear contracts.
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Thus, the reported investor’s utility under linear contracts should be thought of as a lower bound.

To recapitulate, in what follows, we compare the highest possible investor’s utility under quadratic

contracts to the lowest possible investor’s utility under linear contracts.

In the presence of moral hazard, the manager maximizes her expected utility (A1) with respect

to effort given the contract (γ, F ). This yields the following first-order condition for the quadratic

second best effort, eq
SB
:

V 0(a, eq
SB
) =

1

2(1 + eqSB )

µ
1− 2aγ

1 + eqSB

¶−1
2aγ

1 + eqSB
. (A6)

Notice that, for the quadratic contract, the manager’s effort decision in increasing in γ. Hence,

the non-incentive result from linear contracts can be overcome by offering the manager a quadratic

contract.

The investor will maximizes his expected utility (A5) subject to the manager’s optimal effort

decision (A6). Like in the linear case, we cannot solve analytically for the quadratic third best

contract. We follow a numerical procedure similar to the analysis we used in Section 4.1.

We assume the same effort disutility function, V (a, e) = ae2. Replacing this function in (A6)

we obtain the following condition:

γ(a, e) =
2e(1 + e)2

4ae(1 + e) + 1
. (A7)

The reader can easily verify that γ(a, e) < 1+e
2a hence satisfying assumption (S4). Notice that

γ(a, e) is decreasing in a.

We replace the later expression in (A5) and solve for the optimal third best effort as a function

of the manager’s risk aversion coefficient (1/a ∈ {3, 8, 15, 24}) and κ = 1, 2, ..., 10. The investor’s

risk tolerance is assumed to be 1/b = 24. Plugging these values back into (A7) we obtain the third

best values of γ. Like in the linear case, the plots (not shown here) of the expected utility as a

function of γ are always concave. The quadratic second and third best optimal effort expenditure,

γs and expected utility are reported in Table 2. We also report, for comparison, the corresponding

linear values for effort and expected utility.

For all values of the manager’s risk tolerance except the highest (1/a = 1/b = 24), the second

best quadratic effort is higher than the linear effort. Inspite of this, the investor derives higher utility

from linear contracts (except for 1/a = 3 and κ > 4). This is because it is “cheaper” to induce effort

through linear contracts. Moreover, and in general, when the short selling constraint gets tighter (κ

decreases) both levels of effort converge.

Like in Stoughton (1993), when the gap in risk tolerance coefficients between agent and principal

is large enough (in our case, for 1/a = 3), unconstrained, second best quadratic contracts dominate

linear contracts. Interestingly, when the manager’s constraint becomes tighter (concretely for κ < 5)

the result reverses: linear contracts dominate quadratic contracts.

To gain more intuition about this result, Figure 2 shows, for four different values of κ ∈
{1, 10, 100, 1000}, the investor’s percentage loss in certainty equivalent wealth (relative to the first
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best certainty equivalent wealth), as a function of his risk tolerance coefficient, when the man-

ager is compensated with a quadratic contract. This is a measure of the efficiency loss induced by

moral hazard relative to the public-information scenario. The lower right corner graph (κ = 1000)

corresponds, in the limit, to the (unconstrained) second best convergence result (Figure 2, page

2022) reported in Stoughton (1993): the agency cost under quadratic contract drops off rapidly as

a function of the principal’s risk tolerance. However, when κ is finite, increasing the manager’s risk

tolerance produces quite the opposite result: after an initial reduction (the more limited the lower

κ is), the efficiency loss from using quadratic contracts increases with the investor’s risk tolerance.

Appendix B: Proofs

The investor’s unconditional expected utility. Given her utility function and the definition of
her conditional wealth in (2), the investor’s (conditional) expected utility function can be written

as a function of M(α) as follows:

E
h
Ub

³
W̃b(y)

´i
= −exp(aF/r)× exp

µ
− e2

2(1 + e)
y2M(α)

¶
. (B1)

The investor’s unconditional expected utility, E
h
Ub

³
W̃b(α, F, e)

´i
=
R∞
−∞E

h
Ub

³
W̃b(y)

´i
dF (y).

The signal variable is normally distributed, ỹ ∼ N ¡
0, 1+ee

¢
. Then, define the investor’s uncondi-

tional exp E
h
Ub

³
W̃b(α, F, e)

´i
= −exp(aF/r) ×

³
e
1+e

´1/2 R∞
−∞

1√
2π
exp

³
−(1/2)y2e 1+eM(α)

1+e

´
dy.

Substituting s = y2e 1+eM(α)
1+e in the later equation and given the definition of Φ(·) we arrive at

equation (6).

Proof of Proposition 1. The manager’s conditional expected utility is E
h
Ua

³
W̃a(y)

´i
=

−exp(−aF + V (a, e))×



exp
³

e
1+eκaα

¡
y + κaα

2e

¢´
if y < −κaα

e

exp
³
− e2

2(1+e)y
2
´

if | y| ≤ κaα
e

exp
³
− e
(1+e)κaα

¡
y − κaα

2e

¢´
if y > κaα

e .

Taking the expectation across y we obtain E
h
Ua

³
W̃a(α, F, e |κ)

´i
= − exp(−aF + V (a, e))×³

e
1+e

´1/2
×
h
exp

³
(κaα)2

2

´ R −κaα
e

−∞
1√
2π
exp

³
− e
2(1+e)(y − κaα)2

´
dy +

R κaα
e

−κaα
e

1√
2π
exp

¡− e2 y2¢ dy +
exp

³
(κaα)2

2

´ R∞
κaα
e

1√
2π
exp

³
− e
2(1+e) (y + κaα)2

´
dy
i
, the manager’s unconditional expected util-

ity. We propose the following change of variable: s = e
(1+e) (y − κaα)2 if y < −κaα

e ; s = e(1 +

e) y2 if | y| ≤ κaα
e and s = e

(1+e) (y + κaα)2 if y > κaα
e . Replacing the new variable in the manager’s

unconditional expected utility and given the definition of Φ(·) we arrive at (10).

The first derivative of gκ(e|α) with respect to e is:

18

IE Working Papers                                   DF8-116-I                        10-01-2005



g0κ(e |α) = −
1

2

µ
1

1 + e

¶3/2
×Φ

µ
(κaα)2

e

¶
< 0, (B2)

for all α ∈ (0, 1]. Taking the second derivative with respect to e we obtain:

g00κ(e |a) =
1

2

µ
1

1 + e

¶3/2 ·
3

2

µ
1

1 + e

¶
×Φ

µ
(κaα)2

e

¶
+
³κaα
e

´2
× φ

µ
(κaα)2

e

¶¸
> 0. (B3)

Proof of Corollary 1. First, we need the following lemma:

Lemma 1 For all 0 < x <∞, φ(x)− 1
2 (1− Φ(x)) > 0.

Proof: For all x > 0, 12 (1− Φ(x)) = 1√
2π
exp(−x/2)x−1/2 − 1

2

R∞
x

1√
2π
exp(−s/2) s−3/2 ds. There-

fore, φ(x)− 1
2 (1− Φ(x)) = 1

2

R∞
x

1√
2π
exp(−s/2) s−3/2 ds > 0.

Given the manager’s expected utility in Proposition 1 the first part of the corollary will be

proved if we can show that the function gκ(e |α) is decreasing in α. Given Lemma 1, ∂
∂αgκ(e |α) =

−2(κa)2α
h
φ
³
(κaα)2

e (1 + e)
´
− 1

2

³
1− Φ

³
(κaα)2

e (1 + e)
´´i

× exp
³
(κaα)2

2

´
< 0, for all α ∈ (0, 1].

To prove the second part, we show that limκa→∞ gκ(e |α) = g(e). By definition, limx→∞Φ(x) =
1. Therefore, we need to show that

lim
x→∞

·
exp (x/2)×

µ
1− Φ

µ
x
1 + e

e

¶¶¸
= 0. (B4)

Let us re-write (B4) as limx→∞
1−Φ(x 1+e

e )
exp(−x/2) . Both functions (exponential and Φ(·)) are continuous

and differentiable. Taking the derivative of the numerator and the denominator with respect to x,

the limit in (B4) is equal to limx→∞
exp(−x/e)

x = 0.

Proof of Proposition 2. First, we prove the existence and uniqueness of e
TB . Let us call Jκ(e |

α) = V 0(a, e) × gκ(e | α) + g0κ(e | α), the first derivative of the manager’s expected utility function
with respect to e. The third best effort satisfies:

Jκ(eTB | α) = 0, (B5)

J 0
κ(eTB | α) > 0. (B6)

Condition (B5) can be written like follows:

V 0(a, eTB ) = −
g0κ
gκ
(eTB |α). (B7)
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For α = 0, eTB (0) = 0. Let us prove that the right-hand side term is monotonous decreasing in

e for all α ∈ (0, 1]. Taking the derivative of this term with respect to e and given (10) and equations

(B2) and (B3) we get g00κ(e | α) × gκ(e | α) − (g0κ(e | α))2 > 1
2

³
1
1+e

´3
× Φ2

³
(aκα)2

e

´
> 0. Thus,

−g0κgκ (e |α) is (monotonous) decreasing in e for all α ∈ (0, 1] with domain (0, 1/2]. By assumption,
V 0(a, e) > 0 for all e > 0. Hence, for any α ∈ (0, 1] there exists a unique eTB (α) > 0 that solves

condition (B5).

Condition (B6) can be written as V 00(a, e) > −g0κgκ (e |α)× V 0(a, e)−
g00κ
gκ
(e |α). Since −g0κgκ (e |α) <

1
2(1+e) and

g00κ
gκ
(e |α) ≥ 0 for all α ∈ [0, 1], then assumption (S3) implies (B6).

We prove next that e
SB

> e
TB
(α) for all α ∈ [0, 1]. The case of α = 0 is trivial since

e
TB(0) = 0 < eSB . For α > 0, let us re-write the function Jκ(e |α) as Jκ(e |α) =

h
V 0(a, e)− 1

2(1+e)

i
×

g(e) × Φ
³
(κaα)2

e

´
+ V 0(a, e) × exp

³
(κaα)2

2

´
×
³
1− Φ

³
(κaα)2

e (1 + e)
´´
. Evaluating this function

at the second best effort and given (5) we obtain Jκ(eSB | α) = V 0(a, e
SB
) × exp

³
(κaα)2

2

´
×³

1− Φ
³
(κaα)2

e
SB

(1 + e
SB
)
´´
> 0. This implies E0

h
Ua

³
W̃a(α, F, eSB |κ)

´i
= −exp(−aF+V (a, eSB))×

Jκ(eSB |α) < 0. Therefore, for the constrained manager, the marginal utility of effort at eSB is neg-
ative. Since eTB is unique and the function is continuous in e, given conditions (B5) and (B6), it

follows that eSB > eTB .

Finally, given equation (B4), Jκ(eSB |α) tends to zero when κa tend to infinity.

Proof of Corollary 2. We know that e
TB (0) = 0. According to (B5), for any α̂ ∈ (0, 1], there

exists e
TB(α̂) > 0 such that Jκ(eTB | α̂) = 0. The function Jκ is continuous and differentiable with

respect to (α, e). Given (B6), the implicit function theorem allows us to solve “locally” the equation;

that is, to express e as a function of α in a neighborhood of (α̂, eTB ).

More formally: given α̂ ∈ (0, 1] there exists a function e(α),continuous and differentiable, and an
open ball B(α̂), such that e(α̂) = e

TB and Jκ(e(α) |α) = 0 for all α ∈ B(α̂). Taking the derivative
of the last equation with respect to α and evaluated at α̂, ∂

∂αe(α̂) = − ∂
∂αJκ(eTB | α̂)×J 0−1

κ (eTB | α̂).
From (B6), J 0

κ(eTB | α̂) > 0. Therefore, the proposition will be proved if we show ∂
∂αJκ(eTB | α̂) =

V 0(a, eTB )× ∂
∂αgκ(eTB | α̂) + ∂

∂αg
0
κ(eTB | α̂) < 0, for all α̂ ∈ (0, 1]. From (S2), V 0(a, eTB ) > 0 . From

Corollary 1, ∂
∂αgκ(eTB | α̂) < 0. Finally, given equation (B3), ∂

∂αg
0
κ(eTB | α̂) < 0. Since the proof

holds for any α̂ ∈ (0, 1], the Corollary is proved.

Proof of Proposition 3. Given the investor’s indirect utility function in Section 4 the investor’s

unconditional expected utility will be E
h
Ub

³
W̃b(α, F, e |κ)

´i
= − exp(aF/r)×

³
e
1+e

´1/2
×"

exp
µ
(κaαm(α))2

2

¶Z −κaα
e

−∞

1√
2π
exp

µ
− e

2(1 + e)
(y − κaαm(α))2

¶
dy

+

Z κaα
e

−κaα
e

1√
2π
exp

µ
−(1/2)y2e 1 + eM(α)

1 + e

¶
dy+

exp
µ
(κaαm(α))2

2

¶Z ∞
κaα
e

1√
2π
exp

µ
− e

2(1 + e)
(y + κaαm(α))2

¶
dy

#
.
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We propose the following change of variable: s = e
(1+e) (y − κaαm(α))2 if y < −κaα

e ; s =

y2e 1+eM(α)
1+e if | y| ≤ κaα

e and s = e
(1+e) (y + κaαm(α))2 if y > κaα

e . Replacing the new variable in

the investor’s unconditional expected utility we obtain (13).

Proof of Proposition 4. First, we prove the results under the assumption of public information.
The following Lemma shows that the first best split is (first-order) optimal in the absence of moral

hazard:

Lemma 2 Given any effort e > 0, ∂
∂ αE

h
Ub

³
W̃b(α, e |κ)

´i¯̄̄
α=α

FB

= 0.

Proof: Given the definition (14), ∂
∂ αE

h
Ub

³
W̃b(a, e |κ)

´i
= −exp(V (a, e)/r)× gκ(e | a)1/r

× ¡1r gκ(e |α)−1 × ∂
∂ αgκ(e |α)× fκ(α, e) + ∂

∂ αfκ(α, e)
¢
. Evaluating this equation at αFB :

∂

∂α
E
h
Ub

³
W̃b(αFB , e |κ)

´i
= (B8)

−exp(V (a, e)/r)× gκ(e | aFB )1/r ×
µ
1

r

∂

∂ α
gκ(e |αFB ) +

∂

∂ α
fκ(αFB , e)

¶
.

Taking the derivative of gκ(e |α)with respect to α, ∂
∂ αgκ(e |α)

¯̄
α=α

SB

= −2 (κa)21+r exp
µ
1
2

³
κa
1+r

´2¶
×·

φ

µ
1+e
e

³
κa
1+r

´2¶
− 1

2

µ
1− Φ

µ
1+e
e

³
κa
1+r

´2¶¶¸
. Taking now the derivative of fκ(α, e) with respect

to α, ∂
∂ αfκ(αSB

, e) = 2 (κa)2

r(1+r) exp
µ
1
2

³
κa
1+r

´2¶
×
·
φ

µ
1+e
e

³
κa
1+r

´2¶
− 1

2

µ
1− Φ

µ
1+e
e

³
κa
1+r

´2¶¶¸
.

Replacing the two later expressions in (B8) the lemma is proved.

Evaluating (14) at αFB yields the investor’s expected utility function in the constrained public-

information scenario as a function of effort:

E
h
Ub

³
W̃b(αFB , e |κ)

´i
= −exp(V (a, e)/r)× gκ(e |αFB)

(1+r)/r. (B9)

Finally, taking the derivative of (B9) with respect to effort and making it equal to zero we

obtain the following characterization of the constrained public-information effort e
CPI : V

0(a, eCPI ) =
−(1+r)g0κgκ (eCPI |αFB ). It is easy to show that when κ→∞ the later condition converges to condition

(8) for the first best effort. Clearly, for any finite κ, eCPI < eFB .

We now prove the result under moral hazard. According to (B5), given the second best αSB =
1
1+r > 0, there exists a unique eTB (αSB) > 0 such that Jκ(eTB |αSB) = 0. Since the participation con-

straint is binding, αSB will be optimal (necessary condition) only if
∂
∂ αE

h
Ub

³
W̃b(α, e(α) |κ)

´i¯̄̄
α=α

SB

=

0, where e(α) is, according to Corollary 2, a continuous and differentiable function, increasing in α

with e(αSB ) = eTB .
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We take the derivative of (14) with respect to α,

∂

∂ α
E
h
Ub

³
W̃b(α, e(α) |κ)

´i
=

∂

∂ α
E
h
Ub

³
W̃b(α, e) |κ)

´i
+

∂

∂ e
E
h
Ub

³
W̃b(α, e) |κ)

´i
× ∂

∂ α
e(α).

Evaluating (14) at αSB , E
h
Ub

³
W̃b(αSB , e |κ)

´i
= −exp(V (a, e)/r)× gκ(e |αSB )

(1+r)/r. Taking the

derivative of the latter expression with respect to e and evaluating it at eTB :

∂

∂ e
E
h
Ub

³
W̃b(αSB , eTB |κ)

´i
=

− 1
r
exp(V (a, eTB )/r)× gκ(eTB |αSB

)1/r × [Jκ(eTB |αSB
) + rg0κ(eTB |αSB

)] .

By definition, Jκ(eTB |αSB ) = 0. From (B2), g0κ(eTB |αSB ) < 0. Therefore, given Lemma 2, the
definition of gκ(·) in Proposition 1 and Corollary 2:
∂

∂ α
E
h
Ub

³
W̃b(αSB , e(αSB ) |κ)

´i
= −exp(V (a, eTB)/r)× gκ(eTB |αSB )

1/r × g0κ(eTB |αSB)×
∂

∂ α
e(αSB) > 0.

Therefore, αSB is suboptimal in the third best scenario.

Proof of Proposition 6. The measure used to compare both contracts is the investor’s certainty
equivalent wealth. Given the investor’s utility function, Ub(W̃b) = −exp(−bW̃b), the certainty

equivalent wealth of the expected utility u is given by the inverse of this function, C(u) = −ln(−u)/b.
Clearly, for any two values of the investor’s expected utility, u1 and u2, u1 > u2 if and only if

C(u1) > C(u2).

Given Lemma 2, α
FB is optimal in the linear, constrained public-information case. Hence, the

investor’s expected utility is given by equation (B9) and the constrained, linear certainty equivalent

wealth (net of disutility of effort) turns out to be Cκ(e,αFB ) =
a+b
ab (-lngk(e |αFB )).

In the case of quadratic contracts, given (A5), the constrained, quadratic certainty equivalent

(net) wealth is given by Cqκ(e, γ) =
1
2a ln

³
1− 2aγ

1+e

´
+ 1

2b ln
³
1 + 2bγ

1+e

´
− lngk(e |Q(γ))aQ(γ) . Taking the

first-order Taylor expansion of the logarithmic function, we can rewrite the later expression as

Cqκ(e, γ) ≈ 1
aQ(γ) (-lngk(e |Q(γ))).

From Proposition 1 and Corollary 1 we know that gk(e |α) is decreasing in α and e and bounded
below one. Moreover, given equation (B2) in the Appendix B, ∂

∂α g
0
κ(e |α) < 0. Since, by definition,

Q(γ) > α
FB then |gk(e |Q(γ))| < |gk(e | αFB)| for any e and γ. Therefore, given the definition of

Q(γ), we can write Cκ(e,α) − Cqκ(e, γ) >
³
1− 2aγ

1+e

´ µ
− lngk(e |αFB )

a

¶
, for any γ, α and e. It is

now straightforward to see that the right-hand term in the later expression is strictly positive if and

only if assumption (S4) holds.

Notice that the later proof holds for any κ. It is trivial to prove that the same result follows in

the unconstrained scenario when κ→∞.
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Table 1: Optimal third best values of α and comparative statics with the
first best for 1/b = 24.
∆α/α and ∆e/e represent, respectively, the (percentage) change in the investor’s optimal contract

and the manager’s effort expenditure when the later is offered the (sub-optimal) first best split α
FB

in the constrained, third best scenario. ∆C/C, can be interpreted as the net return that would

compensate the investor for the lower utility of the suboptimal share αFB in the third best scenario.

The manager’s disutility function of effort is assumed to be V (a, e) = ae2. First best values αFB are

reported in parenthesis.

Value of the short-selling constraint κ

1 2 3 4 5 6 7 8 9 10

Manager’s risk tolerance 1/a = 3 (αFB = 0.11)

α
TB 0.43 0.35 0.31 0.28 0.25 0.24 0.22 0.21 0.20 0.19
∆α/α 287 215 179 152 125 116 98.0 89.0 80.0 70.9
∆e/e 128 96.9 80.4 68.1 56.3 51.3 43.3 38.8 34.4 30.2
∆C/C 29.0 22.8 19.3 16.8 14.9 13.4 12.1 11.0 10.0 09.1

Manager’s risk tolerance 1/a = 8 (αFB = 0.25)

α
TB 0.61 0.53 0.48 0.46 0.43 0.42 0.40 0.39 0.38 0.38
∆α/α 144 112 92.0 84.0 72.0 68.0 60.0 56.0 52.0 52.0
∆e/e 69.8 54.0 44.5 40.3 34.7 32.5 28.7 26.7 24.7 24.4
∆C/C 13.1 10.1 08.5 07.5 06.7 06.2 05.7 05.3 05.0 04.7

Manager’s risk tolerance 1/a = 15 (αFB
= 0.38)

αTB 0.72 0.65 0.60 0.58 0.56 0.54 0.53 0.52 0.51 0.50
∆α/α 87.2 69.0 56.0 50.8 45.6 40.4 37.8 35.2 32.6 30.0
∆e/e 44.0 34.2 27.7 24.9 22.3 19.8 18.5 17.2 15.9 14.6
∆C/C 06.7 05.0 04.1 03.5 03.1 02.8 02.6 02.4 02.3 02.1

Manager’s risk tolerance 1/a = 24 (α
FB = 0.50)

αTB 0.79 0.73 0.69 0.68 0.65 0.63 0.62 0.61 0.61 0.60
∆α/α 58.0 46.0 38.0 36.0 30.0 26.0 24.0 22.0 22.0 20.0
∆e/e 30.0 23.22 18.9 17.7 14.8 12.8 11.8 10.8 10.7 09.8
∆C/C 03.7 02.7 02.2 01.8 01.6 01.4 01.3 01.2 01.1 01.0
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Table 2: Optimal values of γ, effort expenditure and expected utility for
1/b = 24. The manager’s disutility function of effort is assumed to be V (a, e) = ae2.
The superscripts Q and L denote quadratic and linear case, respectively. The second
best values (SB) are reported in the last row.

Manager’s risk tolerance 1/a = 3 Manager’s risk tolerance 1/a = 8

κ γ
TB

eQ
TB

eL
TB

EUtilityQ EUtilityL γ
TB

eQ
TB

eL
TB

EUtilityQ EUtilityL

1 0.34 0.16 0.16 -0.991087 -0.990022 0.48 0.19 0.20 -0.990211 -0.989047
2 0.55 0.25 0.22 -0.979621 -0.978200 0.77 0.28 0.28 -0.977943 -0.975501
3 0.71 0.32 0.26 -0.967645 -0.966392 1.03 0.35 0.33 -0.965316 -0.961540
4 0.85 0.38 0.28 -0.955652 -0.954970 1.26 0.41 0.38 -0.9528 -0.947647
5 0.98 0.44 0.30 -0.943858 -0.944080 1.46 0.46 0.41 -0.940589 -0.934030
6 1.10 0.49 0.32 -0.932377 -0.933765 1.67 0.51 0.45 -0.928777 -0.920793
7 1.21 0.54 0.33 -0.92127 -0.924058 1.85 0.55 0.48 -0.917407 -0.907998
8 1.32 0.59 0.35 -0.91057 -0.914938 2.03 0.59 0.50 -0.906501 -0.895667
9 1.41 0.63 0.36 -0.900294 -0.906402 2.21 0.63 0.53 -0.89606 -0.883818
10 1.52 0.68 0.37 -0.890446 -0.898428 2.39 0.67 0.56 -0.886083 -0.872449
SB 3.59 1.76 0.50 -0.713478 -0.804401 7.29 1.65 1.00 -0.704506 -0.656763

Manager’s risk tolerance 1/a = 15 Manager’s risk tolerance 1/a = 24

κ γ
TB

eQ
TB

eL
TB

EUtilityQ EUtilityL γ
TB

eQ
TB

eL
TB

EUtilityQ EUtilityL

1 0.57 0.21 0.22 -0.98981 -0.988605 0.62 0.22 0.23 -0.989596 -0.988357
2 0.91 0.30 0.31 -0.977114 -0.974225 0.99 0.31 0.33 -0.976654 -0.973472
3 1.22 0.37 0.37 -0.964085 -0.959209 1.33 0.38 0.40 -0.963387 -0.957794
4 1.51 0.43 0.43 -0.951195 -0.944096 1.65 0.44 0.46 -0.950262 -0.941906
5 1.76 0.48 0.47 -0.938635 -0.929127 2.00 0.50 0.51 -0.937472 -0.926050
6 2.04 0.53 0.51 -0.926493 -0.914429 2.24 0.54 0.55 -0.925109 -0.910391
7 2.26 0.57 0.55 -0.914813 -0.900075 2.57 0.59 0.59 -0.913206 -0.895004
8 2.50 0.61 0.58 -0.90361 -0.886108 2.85 0.63 0.63 -0.901786 -0.879943
9 2.75 0.65 0.61 -0.892884 -0.872550 3.14 0.67 0.67 -0.890849 -0.865238
10 3.00 0.69 0.64 -0.882634 -0.859416 3.37 0.70 0.70 -0.880389 -0.850908
SB 10.78 1.66 1.50 -0.689056 -0.521662 14.01 1.698 2.00 -0.675152 -0.393787
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Figure 1: Investor’s expected utility as a function of α for different values of κ. The
manager and the investor are assumed to have the same risk tolerance coefficient
1/a = 1/b = 8. The vertical lines denote the corresponding optimal third best alpha.
The first best alpha is equal to 0.50.
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Figure 2: The investor’s percentage certainty equivalent loss, ∆C/C,(relative to the
first best certainty equivalent wealth), as a function of his risk-tolerance coefficient
1/b, when the manager is offered a quadratic contract.
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