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Abstract 
 
We introduce a multidimensional latent trait model for binary data with
non-monotone item response functions. We assume that the conditional
probability of endorsing an item is a normal probability density function,
and that the latent traits are normally distributed. The model yields closed
form expressions for the moments of the multivariate Bernoulli (MVB)
distribution. As a result, cell probabilities can be computed also in closed
form, regardless of the dimensionality of the latent traits. The model is an
ideal point model in the sense that a respondent –precisely at the ideal point
(the mode of the item response function)- endorses the item with
probability one.  
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1. Introduction 

Consider n random variables ( )1, , nY Y ′=Y  each with two possible 

outcomes. Without loss of generality we may assign the values {0, 1} to their 

outcomes so that each Yi is Bernoulli and the joint distribution of Y is 

multivariate Bernoulli (MVB: Teugels, 1990; Maydeu-Olivares & Joe, in pressa). 

Latent trait models are a popular class of MVB models in the Social Sciences. 

Any latent trait model for binary data can be written as (Bartholomew & Knott, 

1999) 

( ) ( ) ( ) ( )
1

1 1

Pr Pr 1 1 Pr 1i i
n n y y

i i i i p
i i

Y y Y Y dη η η η
∞ ∞

−

= =−∞ −∞

⎛ ⎞ ⎧ ⎫⎪ ⎪⎪ ⎪⎟⎜ ⎡ ⎤ ⎡ ⎤= = = − =⎟ ⎨ ⎬⎜ ⎢ ⎥ ⎢ ⎥⎟ ⎣ ⎦ ⎣ ⎦⎟⎜⎜ ⎪ ⎪⎝ ⎠ ⎪ ⎪⎩ ⎭
∏∫ ∫ γ∩  (1) 

where we use ( )
1

Pr
n

i i
i

Y y
=

⎛ ⎞⎟⎜ = ⎟⎜ ⎟⎟⎜⎜⎝ ⎠∩  to denote the probability of observing each of the 

possible 2n binary patterns, and ( )p ηγ  denotes the probability density function 

of a p-dimensional vector of continuous unobserved latent traits η.  

Latent trait models are used to reduce dimensionality. But the latent 

traits are also often used to represent unobserved psychological characteristics of 

the respondents of which the binary variables are indicators (proxies).  In the 

psychological literature, latent trait models such as (1) are generally referred to 

as item response theory (IRT) models, and the function ( )Pr 1iY η=  is denoted 

item response function. Many latent trait models for binary as well as for 

polytomous data have been proposed. For a good overview of these models see 

van der Linden and Hambleton (1997). However, due to the difficulty in 

evaluating the multidimensional integral in (1) most latent trait models proposed 

to date assume a single latent trait. Obviously, unidimensional latent trait 

models (i.e., p = 1) are less likely to be able to yield a good fit in applications 

than multidimensional models (McDonald, 1999). The most widely used 

multidimensional latent trait models is the normal ogive model (e.g., McDonald, 

1997). This model assumes that the item response function is a standard normal 

distribution function evaluated at i iβ η′+α  , that is 

( ) ( )1Pr 1i i iY η β η′= = +Φ α , and that the density of the latent traits is 

multivariate standard normal with correlation matrix Ψ, i.e., 

( ) ( ): ,p pη η Ψ= 0γ φ .  

Like the normal ogive model, most latent trait models for binary data use 

monotonically increasing item response functions. However, some social scientist 

(e.g. Andrich, 1996; Roberts, 1995; van Schuur & Kiers, 1994) have argued 
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following Coombs (1964) that if the psychological mechanism by which 

individuals respond to attitude and preference items is a proximity mechanism 

(i.e., the closer the individual and the item are on the latent trait continua the 

higher the probability of the individual endorsing the item) non-monotonic item 

response functions should be used instead. Models based on this assumption of a 

proximity psychological response mechanism are generally referred to as 

unfolding models (see van der Linden and Hambleton, 1997: Part 5) and also as 

ideal point models. Yet, to our knowledge all unfolding IRT models proposed to 

date assume a unidimensional latent trait.  

Here we propose a new multidimensional latent trait model with non-

monotone item response functions. In this model the item response function is 

obtained by using a normal probability density function as link function instead 

of a normal cumulative function as in the normal ogive model. Accordingly, we 

use the term normal PDF model to denote our new model. We show that under 

the normal PDF model the joint moments of the MVB distribution have a closed 

form. Since in the MVB distribution there is a one-to-one linear map between 

the set of joint moments and the set of cell probabilities (Teugels, 1990), the 

estimation of this model need not involve multidimensional integration. This is a 

very attractive feature of the model. The strengths and limitations of the normal 

PDF model will be illustrated in a series of applications where we compare the 

fit of this model against the fit of a multidimensional normal ogive model.   

 

2. The normal PDF model 
Under the normal PDF model cell probabilities are given by (1) where as 

in the normal ogive model we shall assume that     

 ( ) ( ): ,p pη η Ψ= 0γ φ .  (2) 

where Ψ is a correlation matrix. However, in the normal PDF model we assume 

that 

 ( ) ( )1Pr 1 2 : 0,1i i iY η βη′= = +πφ α , (3) 

where ( )1, ,i i ipβ ′ = β β . In (3), 2π  is a constant used to ensure that (3) takes 

the value of one for some value of the latent traits η. Thus, according to the 

model if the respondent and item positions coincide in the space of the latent 

traits, the respondent will endorse the item with probability one.  
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When p = 1, the item response function (3) reaches its maximum at 

i

i

α
η = −

β
 and has two inflexion points 

1 i

i

± − α
η =

β
. In general, p ≥ 1, (3) 

satisfies 

 
( ) ( )
( ) ( )

1 1

1 1

2 2

2 2

i i i i

i i i i

′ ′+ = −

′ ′+ = −

πφ α πφ −α

πφ −α πφ α

βη βη

βη βη
. (4) 

To resolve this indeterminacy we estimate the model parameters with the 

restriction that the intercepts ( )1, , nα ′= α α  be negative.  

Let ( )1, , nΒ β β ′=  be a n × p matrix of regression slopes, and 

nΣ ΒΨΒ ′= +I . Furthermore, let s be any subset of k Bernoulli variables. In 

the MVB distribution, the kth joint moment involving the variables in s is 

( )Pr 1s i i
i i

E Y Y
∈ ∈

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= = =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∏

s s

µ ∩  (Teugels, 1990). We show in the Appendix that 

µs have the following closed form solution under the normal PDF model 

 
( ) ( ) ( )

( ) ( )2

Pr 1 : ,

2 : ,

i i i p
i i

k

k

Y d
∞ ∞

∈ ∈−∞ −∞

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥′= = = + =⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

∏∫ ∫s
s s

s s

0

0

µ ϕ α φ

π φ

∩ βη η Ψ η

α Σ

 (5) 

where αs  and Σs  denote a k × 1 vector and a k × k matrix, respectively, 

obtained by taking the appropriate rows and columns of α and Σ. Thus, the 

joint moments of the MVB distribution under this model are obtained by 

evaluating the k-dimensional normal density (5). Since there is a one to one 

linear correspondence between the set of joint moments of the MVB distribution 

and the set of cell probabilities (Teugels, 1990; Maydeu-Olivares & Joe, in pressa) 

under this model, the cell probabilities (1) can be computed also in closed form. 

To our knowledge, this is the only multidimensional IRT model for binary 

variables besides the linear model (Maydeu-Olivares, in pressb) with this  

attractive property. 

To identify the model it suffices to consider univariate and bivariate 

MVB moments. Identification restrictions remain unchanged when higher order 

moments are considered. Therefore, the identification conditions for the normal 

PDF model are identical to those in the normal ogive model (see McDonald, 

1999). Thus,  when p = 1, all parameters of the normal PDF model are 

identified. When p > 1 a model with minimal identification restrictions (i.e., an 

unrestricted model) is obtained by setting Ψ = I  and to solve the rotational 
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indeterminacy of Β, we let Β be a low echelon matrix. That is, we let βhl = 0,  

l = 1, ..., p; h = 1, ..., l - 1. In the multidimensional case, after Β̂  is estimated 

from a sample it may be rotated orthogonally or obliquely to help interpreting 

the model. Alternatively, based on some a priori information about the data, a 

researcher may wish to fit a restricted model in which some elements of α, Β, 

and Ψ are subject to normalization, exclusion or equality constraints.  

  

3. Limited information estimation and testing 
 Because MVB moments have a closed form solution under this model, 

estimation methods that minimize a discrepancy function between sample and 

expected moments are a natural choice. However, in most latent trait 

applications the number of binary variables is large and the observed 

contingency tables are very sparse. As a result, high order sample moments may 

be very poorly estimated. In contrast, univariate and bivariate sample moments 

can be reasonably estimated in very small samples regardless of n. Limited 

information procedures based on univariate and bivariate information are the 

most widely used approaches to estimate the multidimensional normal ogive 

model (see Christoffersson, 1975; Muthén, 1978, 1993; Maydeu-Olivares, 2001b). 

Limited information estimation methods yield as a side product limited 

information goodness-of-fit tests. Maydeu-Olivares and Joe (in pressa) have 

recently provided a unified treatment of limited and full information estimation 

and goodness-of-fit testing methods for MVB models. They show that bivariate 

information methods have high efficiency. They also show that bivariate 

information tests have more precise Type I errors and are asymptotically more 

powerful in large and sparse binary tables than full information goodness-of-fit 

tests such as Pearson’s X2.  

Limited information methods using only univariate and bivariate 

moments will be employed here to estimate and evaluate the goodness-of-fit of 

the normal PDF model. From (5), the univariate and bivariate moments of the 

MVB distribution under the normal PDF model are  

 [ ] ( ) ( )1Pr 1 2 : 0,1i i i i i iE Y Y β β′= = = = +π πφ α , (6)  

 ( ) ( ) ( )2Pr 1 1 2 : ,ij i j i j ij ij ijE YY Y Y α Β ΨΒ⎡ ⎤ ′⎡ ⎤= = = ∩ = = +⎢ ⎥⎣ ⎦ ⎣ ⎦ 0 Iπ πφ ,  (7) 

where ( ),ij i jα ′= α α  and ( )ij i jΒ β β=  is a p × 2 matrix. To estimate the 
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model, we collect all n univariate moments 1π  and all 
( 1)

2
n n −

 bivariate 

moments 2π  in ( )1 2,π π π′ ′′ = , where ( )1 1, , nπ ′ = π π  and 

( )2 12 1 23 2 1,, , , ,n n n nπ −
′ = π π ,π π , π . We use ( )π θ  to denote the restrictions 

(6) and (7) imposed by model on π , where θ denotes a q-dimensional vector 

containing all mathematically independent elements in α, Β, and Ψ.  Thus, the 

degrees of freedom available for testing are 
( 1)

2
n n

r q
+

= − . We assume that 

π
∆

θ
∂

=
′∂
 is of full rank so that the model is locally identified. Furthermore, let 

N denote sample size and p  be the sample counterpart of π . Then, the model 

parameters can be estimated by minimizing  

 ˆF ′= e We . (8) 

where ( )( )π θ= −e p , and Ŵ  is a matrix converging in probability to W, a 

positive definite matrix. Letting Γ be the asymptotic covariance matrix of N p , 

obvious choices of Ŵ  in (8) are 1ˆ Γ̂ −=W  (weighted least squares, WLS), 

( )( )
1

ˆ ˆDiag Γ
−

=W  (diagonally weighted least squares, DWLS),  and ˆ =W I   

(unweighted least squares, ULS).  

In the Social Sciences this general estimation framework is denoted as 

weighted least squares for moment structures (see Browne, 1984; Browne and 

Arminger, 1995; Satorra and Bentler, 1994). Maydeu-Olivares and Joe (in pressa; 

see also Maydeu-Olivares, 200b), provide a unified framework of full and limited 

information weighted least squares estimation methods for MVB models. Large 

sample properties for the parameter estimates, standard errors and goodness of 

fit tests of the model can be readily obtained using standard theory for the 

estimation of moment structures. Letting ( ) 1
∆ ∆ ∆

−′ ′=H W W , the estimator θ̂  

obtained by minimizing (8) is consistent and 

 ( ) ( )ˆ ,
d

N Nθ θ Γ ′− → 0 H H  (9) 

 ( ) ( )( )ˆ ,
d

N N Γ→ − −e 0 I H I H . (10) 

where ( )( )ˆˆ π θ= −e p  denotes the univariate and bivariate residuals. These 

residuals can be divided by their standard error to obtain standardized residuals 

that are asymptotically standard normal. Also, in unrestricted multidimensional 

solutions where the columns of Β̂  have been rotated, standard errors for the 
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rotated loadings can be obtained using formulae given by Maydeu-Olivares 

(2001b) for rotated normal ogive model estimates. 

Now, from standard theory, ( )ˆ:
a

T NF ′= = −e W I H e , where 
a
=  denotes 

asymptotic equality. Thus, in general,  

 2

1

r
d

i
i

T
=

→∑λ χ ,  (11) 

where the 2 'sχ  are independent chi-square variables with one degree of freedom 

and the 'i sλ  are the non-null eigenvalues of  ( )∆ Γ= −M W I H . In particular, 

when 1ˆ Γ̂ −=W , we obtain an estimator with minimum asymptotic variance 

among the class of estimators (8). In this special case (9) and (11) simplify to 

( ) ( )( )11ˆ ,
d

N Nθ θ ∆Γ ∆
−−− → 0  and  2d

rT →χ . respectively. However, the use of 

1ˆ Γ̂ −=W  requires inverting a very large matrix. Thus, WLS estimation is not 

suitable for large applications.  

When 1ˆ Γ̂ −≠W , following Satorra and Bentler (1994; see also Rao & 

Scott, 1987; Maydeu-Olivares, 2001a, 2001b) to assess the goodness of fit of the 

model we may scale T by its asymptotic mean, or we may adjust T by its 

asymptotic mean and variance using the following two test statistics  

 
( )Tr /
T

T
r

=
M

 
( )2Tr /
T

T
r

=
M

. (12) 

In (12),  and T T  denote the scaled (for mean) and adjusted (for mean and 

variance) test statistics. The former is referred to a chi-square distribution with r 

degrees of freedom, whereas the latter is referred to a chi-square distribution 

with 
( )

( )

2

2

Tr

Tr /
d

r
=

M
M

 degrees of freedom.  

 Here we shall estimate the normal PDF model by simply using ˆ =W I  

(i.e., ULS) where standard errors, standardized residuals, and goodness of fit 

tests will be computed via (9), (10) and (12) by evaluating ∆ and Γ at the 

estimated parameter values. This approach is very similar to the one 

implemented in the computer program NOHARM (Fraser & McDonald, 1988) 

which estimates the multidimensional normal ogive model also using ULS from 

univariate and bivariate moments. However, there are two differences between 

the present approach and the approach used in NOHARM (see Maydeu-Olivares, 

2001b). The first difference is that in NOHARM estimation is performed in two 

stages to improve computational efficiency exploiting a separability of 

parameters that exist in the normal ogive model but not in the normal PDF 
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model. The second difference is that to obtain standard errors and goodness of fit 

tests for NOHARM Γ is consistently estimated using sample proportions, 

whereas in our estimation of the normal PDF model Γ is consistently estimated 

by evaluating it at the estimated parameter values. This is because Γ depends on 

fourth order joint moments. These can be computed in closed form under the 

normal PDF model, but they require multivariate integration in the normal 

ogive model. 

 

4. Applications 
We present four applications where we compare the fit of the normal 

PDF model estimated using the limited information methods described against 

the fit of the normal ogive model estimated using NOHARM. In the first 

application, we model attitudes towards censorship. This is a typical application 

where the item stems suggest that it is plausible to assume that individuals use a 

proximity mechanism in responding the items. In applications like this one, the 

normal PDF model should provide a better fit than the normal ogive model. In 

the second application, given the item stems, a proximity mechanism in 

responding the items does not seem plausible. Rather, a priori, a model with 

monotonically increasing item response functions  seems  more reasonable for 

these items. The third application is used to illustrate that if the sample size is 

small, we may not be able to empirically distinguish between the normal PDF 

and normal ogive model, although the estimated item response functions appear 

quite distinct. Finally, the fourth application is used to illustrate that in some 

situations we may not empirically distinguish between these two models, even 

with large sample sizes, because their item response functions are very similar in 

the region of high density of respondents.  

 

4.1 Attitudes towards censorship 

 In this example, we model a set of 223 observations collected by Roberts 

(1995) on 20 statements reflecting attitudes toward censorship1. The statements 

were originally published in Rosander and Thurstone (1931). Roberts (1995) 

asked the respondents to rate each statement using a 6 point scale ranging from 

"Strongly disagree" to "Strongly agree". Their responses were dichotomized (0 = 

disagree, 1 = agree) for this analysis.  

 In Table 1 we provide goodness of fit results for the normal PDF model 

                                         

1 The data is available at http://www.education.umd.edu/EDMS/tutorials/data.html. 
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applied to these data with 1, 2, and 3 latent traits. In this table, we also provide 

the goodness of fit results obtained for the normal ogive model using NOHARM. 

As can be seen in this table, the normal PDF model reproduces the univariate 

and bivariate moments of the data better than the normal ogive model. Two 

latent trait dimensions seem to be necessary to reproduce these data using the 

normal PDF model, whereas three dimensions seem to be necessary for the 

normal ogive model. To verify that two latent trait dimensions suffice to 

reproduce these data using the normal PDF we performed nested tests using the 

mean scaled test statistic (see Satorra & Bentler, 2001). The results shown in 

Table 2 suggest that two dimensions are sufficient to model these data.  

----------------------------------------- 

Insert Tables 1 and 2 about here 

---------------------------------------- 

In Figure 1 we provide a plot of the slope parameters estimated in the 

two dimensional solution. The plot suggests the following restricted solution: We 

let statements {1, 2, 8, 9, 11, 14, 16, 17, 20} be a function of the first latent trait 

only, we let statements {3, 7, 10, 15, 18, 19} be a function of the second latent 

trait only, and we let the remaining statements {4, 5, 9, 13, 14} be a function of 

both latent traits. The latent traits are allowed to be correlated. As shown in 

Table 1, this model also fits reasonably the univariate and bivariate moments of 

the data. However, the estimated correlation among the latent traits was -0.93 

with a standard error of 0.04. Clearly, this is not an appealing solution from a 

substantive viewpoint. 

----------------------------------------- 

Insert Figure 1 about here 

---------------------------------------- 

Figure 1 suggest an alternative approach to modeling these data. In this 

figure, most items fall roughly on a straight line close to the latent trait 1 axis. 

High scores on this axis indicate an anti-censorship attitude and low scores on 

this axis a pro-censorship attitude. We can not meaningfully interpret the second 

latent trait. This, along with the results obtained for the restricted model, 

suggests that the second latent trait is just “noise” induced by some items which 

are not appropriate indicators of the first latent trait. To identify which items 

are poor indicators of the latent trait “attitude towards censorship” we shall 

inspect the standardized univariate and bivariate residuals obtained from fitting 

the one dimensional model. The five largest standardized residuals for the one 

dimensional solution are {-6.33, -4.84, 3.64, -3.14, -2.96} which correspond to the 

following univariate and bivariate residuals {(4), (12), (19,4), (5), (4,1)}. These 
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residuals suggest that a one dimensional solution may fit the 17 statements 

remaining after deleting statements {4, 5, 12}. The goodness of fit indices for this 

model are: T = 145.01 on 119 df, p = 0.05, and T = 105.30 on 86.41 df, p = 

0.08. Interestingly, the β estimate for item 16 is very low, 0.01, with a standard 

error of 0.06. Under a unidimensional normal PDF model this statement 

"Education of the public taste is preferable to censorship" is a poor indicator of 

attitude towards censorship. After removing this item, we fitted a one 

dimensional model for the remaining 16 items obtaining finally T = 133.64 on 

104 df, p = 0.03, and T = 95.92 on 74.65 df, p = 0.05. Thus, we have been able 

to identify a set of 16 items from the original set that can be used to measure 

attitude towards censorship. The para-meter estimates and standard errors for 

this final model are given in Table 3.  

----------------------------------------- 

Insert Table 3 and Figure 2 about here 

---------------------------------------- 

We provide in Figure 2 plots of the item response function for selected 

items. The plots in Figure 2 illustrate the versatility of the model. The item 

response function for item 9 corresponds to an item that is endorsed only by 

respondents with a pro-censorship view. The probability of endorsing this item is 

maximum for extreme pro-censorship respondents and the item response function 

in the region of high density of respondents is monotonically increasing. The plot 

for item 3 (“We must have censorship to protect the morals of young people”) 

on the other hand is non-monotonic. According to the model, the probability of 

endorsing the item is maximum for respondents with a moderately positive 

attitude towards censorship. The more anti-censorship the attitude the less likely 

the item is endorsed. But respondents with an extreme pro-censorship view are 

also less likely to endorse the item than respondents with an moderate pro-

censorship view. They may not endorse the item because they believe that the 

morals of all people should be protected not only the morals of young people. 

Finally, the model can handle well “I do not have a clear opinion on the topic” 

items such as item 14. The probability of endorsing this item is maximum for 

respondents that are neither pro nor against-censorship and minimum for 

respondents with extreme pro or against-censorship views. 

 Given this discussion, it is not surprising that, as shown in Table 1, a 

model with monotonically increasing item response functions, such as the normal 

ogive model, fails to fit adequately these 16 items. 
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4.2 Satisfaction with Life 

 Edward Diener kindly provided the responses of 7167 individuals from 42 

countries to the Satisfaction with Life Scale (Diener, Emmons, Larsen & Griffin, 

1985). The questionnaire consists of these 5 items 

 1. In most ways my life is close to my ideal.  

 2. The conditions of my life are excellent.  

 3. I am satisfied with my life.  

 4. So far I have gotten the important things I want in life.  

 5. If I could live my life over, I would change almost nothing. 

which are to be rated on a 7 point scale ranging from "Strongly disagree" to 

"Strongly agree". For this analysis we discarded those individuals who chose the 

middle category “neither agree nor disagree” for any of the items, and 

dichotomized the responses of the remaining individuals (0 = disagree, 1 = 

agree). The resulting sample size was 4073. 

 Of these item stems only the first and third may be consistent with the 

notion of a proximity response mechanism. Thus, a priori, we expect a model 

with monotonic curves to fit better these data than the normal PDF model. In 

Table 4 we provide goodness of fit results for one and two dimensional normal 

PDF and normal ogive models fitted to these data. We also include in this table 

the results of a restricted two dimensional model suggested by McDonald (1999). 

In this model, the first three items are indicators of present satisfaction with life, 

the two last items measure past satisfaction with life, and both latent dimensions 

are correlated. As can be seen in this table, the two dimensional restricted 

normal ogive model provides a good fit to these data given the sample size. On 

the other hand, all the normal PDF models provide an extremely poor fit to 

these data.  

----------------------------------------- 

Insert Table 4 about here 

---------------------------------------- 

4.3 Attitudes of morality and equality 

 Jöreskog and Sörbom (1996) provide data on 200 Swedish school children 

in grade 9 who used a 4-point scale (“unimportant”, “not important”, 

“important”, and “very important”) to rate how important to them were  

1. human rights 

2. equal conditions for all people 

3. racial problems 

4. equal value of all people 

5. euthanasia 

6. crime and punishment 

7. conscientious objectors 

8. guilt and bad conscience 
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Their responses were dichotomized for this analysis (0 = not important, 1 = 

important)2.  

We fitted one and two dimensional normal PDF and normal ogive models 

to these data. We also fitted a restricted two dimensional model suggested in 

Jöreskog and Sörbom (1996). In this restricted model items {1,2,4,5} are taken 

as indicators of the latent trait “equality”, and items {3,6,7,8} are taken as 

indicators of the latent trait “morality”. Both latent traits are correlated. A 

priori, we do not believe that a model based on a proximity mechanism is 

suitable for these data. Rather, we expected the normal ogive model with its 

monotonic item response functions to fit better these data. This is because a 

priori we expected that the higher the sense of morality and equality of 

respondents the more likely they would endorse these items. Yet, as can be seen 

in Table 5 all models provide a good fit to the data. Nested tests using the scaled 

test statistic revealed that for both the normal PDF and normal ogive model, 

neither the two dimensional unrestricted nor the two dimensional restricted 

solutions provide significant improvement over the one dimensional model. 

Furthermore, as seen in Table 5, the difference in fit between the one 

dimensional normal PDF and normal ogive models is negligible. Yet, the 

estimated item response functions of these two models are markedly different for 

most items. This is shown in Figure 3 where we provide plots for selected items.  

----------------------------------------- 

Insert Table 5 and Figure 3 about here 

---------------------------------------- 

If we can not choose between these models based on their fit to the 

univariate and bivariate moments, could we choose between them using full 

information statistics? To answer this question, we estimated both 

unidimensional models using full information maximum likelihood. We obtained 

X2 = 230.68 and G2 = 152.30 for the normal PDF model and X2 = 234.10 and G2 

= 148.28 for the normal ogive model. The number of degrees of freedom is 239. 

Thus, although a priori we consider that the normal PDF model is not an 

appropriate model for these data, the fit of the model is not outperformed by the 

normal ogive model. A larger dataset would be needed to distinguish between 

these two models in this application. 

 

                                         

2 Five respondents had out of range values for some of the items. Therefore the actual 

sample size used in the analysis was 195. 
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4.4 Political action survey 

 Jöreskog and Moustaki (2001) modeled the USA sample of the Political 

Action Survey. 1719 individuals responded to the 6 items of this questionnaire 

using the following categories “Strongly agree”, “Agree”, “Disagree”, “Strongly 

disagree”,  “Do not know” and “No answer”.  After eliminating those cases with 

“Do not know” and “No answer” responses the total sample size is 1554. The 

data was dichotomized (0 = disagree, 1 = agree) for the present analysis.  

 We estimated one dimensional normal PDF and normal ogive models to 

these data. We obtained the following goodness of fit statistics for the normal 

PDF model: T = 0.04, T = 15.39 on 9 df, p = 0.08, and T = 13.72 on 8.03 df, p 

= 0.09. For the normal ogive model estimated using NOHARM we obtained T = 

0.04, T = 16.19 on 9 df, p = 0.06, and T =  11.9 on 6.62 df, p = 0.09. Thus, 

both models yield a similar fit to the univariate and bivariate moments of these 

data even though the sample size is large in this case.  

This occurs because in this dataset the proportion of respondents that 

endorse each item is in all cases very low: {0.08, 0.05, 0.04, 0.02, 0.02}. As a 

result, the item response functions of the normal PDF model are monotonically 

increasing in the area of high density of respondents, ( )3, 3∈ −η , and they are 

very hard to distinguish from the item response functions of the normal ogive 

model. This is shown in Figure 3, where we plot the item response functions for 

the normal PDF and normal ogive models for the first four items.  

----------------------------------------- 

Insert Figure 4 about here 

---------------------------------------- 

 In fact, the predictions of these two models are hard to distinguish even 

when all the information available in these data is employed. We estimated by 

full information maximum likelihood the two competing models. For the normal 

PDF model we obtained X2 = 44.84 and G2 = 52.14 on 51 df. For the normal 

ogive model we obtained X2 = 44.89 and G2 = 53.04 also on 51 df. 

 

5. Conclusions 
In some item response applications it is reasonable to assume that 

individuals use a proximity mechanism in responding the items. Latent trait 

models based on this assumption are generally denoted as unfolding or ideal 

point models. In applications, models with several latent traits may often be 

needed to reproduce the data adequately. We have introduced here a multidi-

mensional unfolding model in which the item response function is modeled using 
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a normal probability density function and the latent trait density is assumed to 

be multivariate normal. The model has the very appealing property of yielding 

closed form expressions for the moments of the multivariate Bernoulli distribu-

tion. As a result, cell probabilities under this model can be computed without 

resorting to numerical integration regardless of the number of traits involved. 

The model proposed is indeed an ideal point model in the sense that a res-

pondent –precisely at the ideal point (the mode of the item response function)- 

endorses the item with probability one. A more general model with an additional 

parameter controlling the probability of the modal point is easily conceived. Such 

a model may deserve future investigation, though problems can be anticipated 

related to bounds on the probabilities and possibly identifiability. Further 

research should consider the extension of this model to the polytomous case. 

We have seen that in applications where a proximity response mechanism 

is plausible the model indeed fits better than the multidimensional normal ogive 

model. The model seems particularly suited to model items of the type “I don’t 

have a clear opinion on the topic”. However, it is important to consider a priori 

whether a proximity response mechanism is plausible for the application of 

interest. This is because, as we have seen, when only a small sample is available 

the normal PDF and normal ogive models may be hard to distinguish even 

though their item response functions are quite distinct. Furthermore, even when 

large samples are available, if the proportion of respondents endorsing the items 

is either very low or very large for all items it may be hard to distinguish these 

two models model as their item response functions will coincide in the region of 

high density of respondents,.  

Here, we have estimated the model simply by minimizing the sum of 

squared errors between the observed and expected univariate and bivariate 

moments of the MVB distribution. Limited information methods are an 

attractive option to estimate latent trait models in sparse binary tables. Maydeu-

Olivares (2001a) reports a simulation study where  100 observations sufficed to 

obtain parameter estimates and standard errors with a relative bias of less than 

10% in estimating a 6-dimensional latent trait model for 21 binary variables. 

Limited information methods offer two important additional benefits. On the one 

hand, they yield residuals that can be readily used to detect the source of misfit 

in poorly fitting models. On the other hand, they provide a goodness of fit test 

with a reasonable behavior in sparse tables. Maydeu-Olivares (2001b) found that 

the mean and variance adjusted test statistic employed here closely matched its 

reference chi-square distribution even in the extremely sparse tables of his 

simulation study. 
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Appendix 

To prove (5) we apply the change of variable 
1
2Ψ η

−
=z  to obtain 

1
2η Ψ= z  and 

1
2

d
dη

Ψ=
z

. Thus, 
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Now, inside the curled brackets we have 
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Finally, to prove (5) it suffices to show that 

  sΣ=A  (A.1) 

 1
s s sα Σ α−′=C , (A.2) 

where s k s sΣ ΒΨΒ ′= +I .  

Now, to prove (A.1) we write p
′= +A I HH  with 

1
2

sΨ Β ′=H . Therefore, 
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which concludes the proof. 
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Table 1 

Goodness of fit tests for the censorship data 

 

 

 items traits T T  df p T  df p 

20 1 5.40 244.38 170 < 0.01 183.40 127.58 < 0.01 

20 2 3.58 180.15 151 0.05 126.86 106.33 0.09 

20 3 2.66 145.42 133 0.22 104.00 95.12 0.25 N
or

m
al

 

P
D

F
 

16 1 2.59 133.64 104 0.03 95.92 74.65 0.05 

20 1 9.73 408.50 170 < 0.01 165.05 68.67 < 0.01 

20 2 4.27 214.21 151 < 0.01 99.30 70.00 0.01 

20 3 3.07 169.77 133 0.02 83.83 65.67 0.07 N
or

m
al

 

og
iv

e 

16 1 3.63 171.01 104 < 0.01 85.98 52.29 < 0.01 

 

 

Notes: N = 223; ˆT NF= ; T denotes T adjusted by its asymptotic mean; T  

denotes T adjusted by its asymptotic mean and variance
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Table 2 

Nested tests for comparing the fit of normal pdf models with increasing number 

of latent traits to the 20 censorship items 

 

 

model T T  df p 

1 vs. 2 1.82 45.76 19 < 0.01 

2 vs. 3 2.59 29.16 18 0.05 

 

 

Notes: N = 223; ˆT NF= ; T denotes T adjusted by its asymptotic mean.
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Table 3 

Parameter estimates and standard errors for a one dimensional model applied to 

16 statements on censorship 

 

Item Stem α β 

1 
I doubt if censorship is wise. -1.20 

(0.10) 

-0.87 

(0.24) 

2 
A truly free people must be allowed to choose their own 

reading and entertainment. 

-0.28 

(0.10) 

-0.33 

(0.10) 

3 
We must have censorship to protect the morals of young 

people. 

-1.05 

(0.09) 

0.77  

(0.16) 

6 
The whole theory of censorship is utterly unreasonable. -1.54 

(0.08) 

-0.50 

(0.10) 

7 
Until public taste has been educated, we must continue to 

have censorship. 

-1.48 

(0.11) 

0.98  

(0.22) 

8 
Many of our greatest literary classics would be suppressed 

if the censors thought they could get away with it. 

-0.63 

(0.06) 

-0.27 

(0.07) 

9 
Everything that is printed for publication should first be 

examined by government censors. 

-1.91 

(0.11) 

0.63  

(0.13) 

10 
Plays and movies should be censored but the press should 

be free. 

-1.88 

(0.09) 

0.30  

(0.10) 

11 
Censorship has practically no effect on peoples morals. -1.36 

(0.07) 

-0.33 

(0.08) 

13 
Censorship protects those who lack judgment or 

experience to choose for themselves. 

-1.02 

(0.06) 

0.38  

(0.08) 

14 
Censorship is a very difficult problem and I am not sure 

how far I think it should go. 

-0.16 

(0.10) 

0.76  

(0.07) 

15 
Censorship is a good thing on the whole although it is 

often abused. 

-0.75 

(0.11) 

0.88  

(0.14) 

17 
Human progress demands free speech and a free press. -0.25 

(0.09) 

-0.43 

(0.08) 

18 
Censorship is effective in raising moral and aesthetic 

standards. 

-1.13 

(0.10) 

0.89  

(0.18) 

19 
Censorship might be warranted if we could get reasonable 

censors. 

-0.47 

(0.10) 

0.80  

(0.10) 

20 
Morality is produced by self-control, not by censorship. -0.30 

(0.10) 

-0.42 

(0.09) 

 

Note: The statement numbering corresponds to the original 20 item set; standard 

errors in parentheses 
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Table 4 

Goodness of fit tests for the Satisfaction with Life Scale 

 

 

 

 

 model T T  df p T  df p 

1 trait 7.24 273.70 5 < 0.01 258.53 4.72 < 0.01 

2 traits, 

unrestricted 
7.18 198.79 1 < 0.01 198.79 1.00 < 0.01 

N
or

m
al

 

P
D

F
 

2 traits, restricted 6.37 358.19 4 < 0.01 178.16 1.79 < 0.01 

1 trait 0.93 42.84 5 < 0.01 41.14 4.80 < 0.01 

2 traits, 

unrestricted 
0.01 0.75 1 0.39 0.75 1.00 0.39 

N
or

m
al

 

og
iv

e 

2 traits, restricted 0.21 10.20 4 0.04 10.04 3.94 0.04 

 

 

 

 

Notes: N = 4073; T  denotes T adjusted by its asymptotic mean; T denotes T 

adjusted by its asymptotic mean and variance 
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Table 5 

Goodness of fit tests for the morality and equality data 

 

 

 

 

 model T T  df p T  df p 

1 trait 0.24 17.48 20 0.62 14.22 16.28 0.60 

2 traits, unrestricted 0.13 12.16 13 0.51 10.69 11.43 0.51 

N
or

m
al

 

P
D

F
 

2 traits, restricted 0.24 17.44 19 0.56 14.14 15.4 0.54 

1 trait 0.30 16.93 20 0.66 12.34 14.57 0.62 

2 traits, unrestricted 0.11 7.20 13 0.89 5.53 9.98 0.85 

N
or

m
al

 

og
iv

e 

2 traits, restricted 0.26 14.60 19 0.75 10.64 13.84 0.70 

 

 

 

 

Notes: N = 223; ˆT NF= ; T  denotes T adjusted by its asymptotic mean; T  

denotes T adjusted by its asymptotic mean and variance
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Figure 1 

Censorship data. Plot of the regression slopes for the two dimensional solution 

 

 

 

latent trait 1

1.2.8.4-.0-.4-.8-1.2

la
te

nt
 tr

ai
t 2

1.6

1.2

.8

.4

0.0

-.4

20

1918

17
16

15

14

13

12

11
10

9

87

6

5

4

3

2
1



IE Working Paper                                                                DO8-125-I                                                 11-02-2005 

 24 

Figure 2 

Censorship data. Plot of selected item response functions 

 

Item 2: A truly free people must be allowed to choose their own 

reading and entertainment 
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Item 3: We must have censorship to protect the morals of young 

people. 
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Item 9: Everything that is printed for publication should first be 

examined by government censors 
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Item 14: Censorship is a very difficult problem and I am not sure 

how far I think it should go.  
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Figure 3 

Morality and equality data. Plot of selected item response functions 

 

 

Item 2: Are equal conditions for all people important to you? 
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Item 7: Are conscientious objectors important to you? 
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Note: the dashed line is the normal ogive model and the solid line is the normal PDF model 
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Figure 4 

Political action data. Plot of selected item response functions 
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Item 4 
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Note: the dashed line is the normal ogive model and the solid line is the normal PDF model 


