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Abstract 
Asymptotic distribution free (ADF) interval estimators for coefficient alpha 
were introduced in the context of an application by Yuan, Guarnaccia, and 
Hayslip (2003). Here, simulation studies were performed to investigate the 
behavior of ADF vs. normal theory (NT) interval estimators of coefficient 
alpha for tests composed of ordered categorical items under varied 
conditions of sample size, item skewness and kurtosis, number of items, 
and average inter-item correlation. NT intervals were found to be 
inaccurate when item skewness > 1 or kurtosis > 4. But for sample sizes 
over 100 observations, ADF intervals provide an accurate perspective of 
the population coefficient alpha of the test regardless of item skewness and 
kurtosis. A formula for computing ADF confidence intervals for coefficient 
alpha for tests of any size is provided, along with its implementation as a 
SAS macro. 
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1. Introduction 
 Arguably the most commonly used procedure to assess the reliability of a 
questionnaire or test score is by means of coefficient alpha (Hogan, Benjamin & Brezinski, 
2000). As McDonald (1999) points out, this coefficient was first proposed by Guttman (1945) 
with important contributions by Cronbach (1951). Coefficient alpha is a population parameter 
and thus an unknown quantity. In applications, it is typically estimated using the sample 
coefficient alpha, a point estimator of the population coefficient alpha. As with any other 
point estimator, sample coefficient alpha is subject to variability around the true parameter, 
particularly in small samples. Thus, a better appraisal of the reliability of test scores is 
obtained by using an interval estimator for coefficient alpha. Duhachek and Iacobucci (2004; 
see also Iacobucci & Duhachek, 2003, and Duhachek, Coughlan, & Iacobucci, 2005) have 
made a compelling argument to use an interval estimator for coefficient alpha instead of a 
point estimator.  
 Methods for obtaining interval estimators for coefficient alpha have a long history 
(see Duhachek and Iacobucci, 2004 for an overview). The initial proposals for obtaining 
confidence intervals for coefficient alpha were based on model as well as distributional 
assumptions. Thus, if a particular model held for the population covariance matrix, and the 
observed data followed a particular distribution, then a confidence interval for coefficient 
alpha could be obtained. The sampling distribution for coefficient alpha was independently 
derived by Kristof (1963) and Feldt (1965) assuming that the test items are strictly parallel 
(Lord & Novick, 1968) and normally distributed. This model implies that all the item 
variances are equal, and all item covariances are equal.  However, Barchard and Haskstian 
(1997) found that confidence intervals for coefficient alpha obtained using these results were 
not sufficiently accurate when model assumptions were violated (i.e. the items were not 
strictly parallel).  As Duhachek and Iacobucci (2004) have suggested, the lack of robustness 
of the interval estimators for coefficient alpha to violations of model assumptions have 
hindered the widespread use of interval estimators for coefficient alpha in applications.  
 A major breakthrough in interval estimation occurred when van Zyl, Neudecker, and 
Nel (2000) derived the asymptotic (i.e. large sample) distribution of sample coefficient alpha 
without model assumptions 1.  The normal theory (NT) interval estimator proposed by van 
Zyl et al. (2000) does not require the assumption of compound symmetry.  In particular, these 
authors assumed only that the items composing the test were normally distributed. Duhachek 
and Iacobucci (2004) recently investigated the performance of the confidence intervals for 
coefficient alpha using the results of van Zyl et al. (2000) versus procedures proposed by 
Feldt (1965) and those proposed by Hakstian and Whalen (1976) under violations of the 
parallel measurement model. They found that the model-free, NT interval estimator proposed 
by van Zyl et al. (2000) uniformly outperformed competing procedures across all conditions.  
 However, the results of van Zyl et al. (2000) assume that the items composing the test 
can be well approximated by a normal distribution. In practice, tests are most often composed 
of binary or Likert-type items for which the normal distribution can be a poor approximation. 
Yuan and Bentler (2002) have shown that the NT based confidence intervals for coefficient 
alpha are asymptotically robust to violations of the normality assumptions under some 
conditions. Unfortunately, these conditions cannot be verified in applications. So, whenever 
the observed data are markedly non-normal, the researcher can not verify if the necessary 
conditions put forth by Yuan and Bentler (2002) are satisfied or not.   
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Recently, using the scales of the Hopkins Symptom Checklist (HSCL: Derogatis, Lipman, 
Rickels, Uhlenhuth, & Covi, 1974), Yuan, Guarnaccia, and Hayslip (2003) have compared 
the performance of the NT confidence intervals of van Zyl et al. (2000) to a newly proposed 
model-free asymptotically distribution free (ADF) confidence interval, and several 
confidence intervals based on bootstrapping. Yuan et al. (2003) concluded that the ADF 
intervals were more accurate for the Likert-type items of the HSCL than the NT intervals, but 
less accurate than the bootstrapping procedures.  
 Also, as Yuan et al. (2003: p. 7) point out, their conclusions may not be generalized to 
other Likert-type scales because the item distribution shapes, such as skewness and kurtosis, 
of the HSCL subscales may not be shared by other psychological inventories composed of 
Likert-type scales. The purpose of the current study is to investigate by means of a simulation 
study the behavior of the ADF interval estimator for coefficient alpha introduced by Yuan et 
al. (2003) versus the NT interval estimator proposed by van Zyl et al. (2000) with Likert-type 
data 2. In so doing, we consider conditions where the Likert-type items show skewness and 
kurtosis similar to those of normal variables, but also conditions of high skewness, typically 
found in responses to questionnaires measuring rare events such as employee drug usage, 
psychopathological behavior, and adolescent deviant behaviors such as shoplifting (see also 
Micceri, 1989).  Computing the ADF confidence interval for coefficient alpha can be difficult 
when the number of variables is large.  Our work provides some simplifications to the 
formulae that enable the computation of these confidence intervals for tests of any size. Yuan 
et al. (2003) did not provide these simplifications and practical use of their equations would 
be limited in the number of variables.  Further, we provide a SAS macro with the 
simplifications to compute the NT and ADF confidence intervals for coefficient alpha. 
 
Coefficient alpha and the reliability of a test score 
 Consider a test composed of p items Y1, …, Yp intended to measure a single attribute. 
One of the most common tasks in psychological research is to determine the reliability of the 
test score 1 pX Y Y= + +L , that is, the percentage of variance of the test score that is due to 
the attribute of which the items are indicators.  
 The most widely used procedure to assess the reliability of a questionnaire or test 
score is by means of coefficient alpha (Guttman, 1945; Cronbach, 1951). In the population of 
respondents, coefficient alpha is 
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from the population is available, and a point estimator of the population α given in Equation 
(1) can be obtained using the sample coefficient alpha 
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where sij denote the sample covariance between items i and j, and sii denote the sample 
variance of item i.   
 A necessary and sufficient condition for coefficient alpha to equal the reliability of the 
test score is that the items are true-score equivalent  (a.k.a. essentially tau-equivalent items) 
in the population (Lord & Novick, 1968: p. 50; McDonald, 1999: Chapter 6). A true-score 
equivalent model is simply a one factor model for the item scores where the factor loadings 
are equal for all items. The model implies that the population covariances are all equal, but 
that the population variances are not equal for all items.  
 A special case of the true-score equivalent model is the parallel items model, where in 
addition to the assumptions of the true-score equivalent model, the unique variances of the 
error terms in the factor model are assumed to be equal for all items. The parallel items model 
results in a population covariance matrix with only two distinct parameters, a covariance 
common to all pairs of items, and a variance common to all items. This covariance structure 
is commonly referred to as compound symmetry. 
 In turn, a special case of the parallel items model is the strictly parallel items model. 
In this model, in addition to the assumptions of parallel items, the items means are assumed 
to be equal across items. When items are parallel or strictly parallel, coefficient alpha also 
equals the reliability of the test score.  
 However, when the items do not conform to a true score model, coefficient alpha does 
not equal the reliability of the test score. For instance, if the items conform to a one factor 
model with distinct factor loadings (a.k.a., congeneric items) then the reliability of the test 
score is given by coefficient omega 3 . Under a congeneric measurement model, coefficient 
alpha underestimates the true reliability. However, the difference between coefficient alpha 
and coefficient omega is small (McDonald, 1999), unless one of the factor loadings is very 
large (say .9) and all the other factor loadings are very small (say .2) (Raykov, 1997). This 
condition is rarely encountered in practical applications.  
 
NT and ADF interval estimators for coefficient alpha 
 This section summarizes the main results regarding the large sample distribution of 
sample coefficient alpha. Technical details can be found in the Appendix.  
 In large samples, â  is normally distributed with mean α and variance 2j  (see the 
Appendix). As a result, in large samples an x% confidence interval for the population 
coefficient alpha can be obtained as (LL; UL). The lower limit of the interval, LL, is 2ˆ ˆxza j- , 
whereas the upper limit, UL, is  2ˆ ˆxza j+ . ĵ  is the square root of the estimated large sample 

variance of sample alpha (i.e. its asymptotic standard error), and 2xz  is the ( )1 %2
x-  

quantile of a standard normal distribution. Thus, for instance, 2 1.96xz =  for a 95% 

confidence interval for α.  
 No distributional assumptions have been made so far. The above results hold under 
NT assumptions (i.e., when the data are assumed to be normal), but also under the ADF 
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assumptions set forth by Browne (1982, 1984) 4. Under normality assumptions, 2j  depends 
only on population variances and covariances (bivariate moments), whereas under ADF 
assumptions 2j  depends on fourth order moments (see Browne 1982, 1984 for further 
details).  
 Under normality assumptions, 2j  can be estimated from the sample variances and 
covariances (see the Appendix). In contrast, the estimation of 2j  under ADF assumptions 
requires computing an estimate of the asymptotic covariance matrix of the sample variances 

and covariances. This is a q × q matrix, where ( )1
2

p pq += . One consideration when 

choosing between the ADF and NT intervals is that the former are, in principle, 
computationally more intensive because a q × q matrix must be stored, and the size of this 
matrix increases very rapidly as the number of items increases. However, we show in the 
Appendix that an estimate of the asymptotic variance of coefficient alpha under ADF 
assumptions can be obtained without storing  this large matrix. This formula has been 
implemented in a SAS macro which is available from the authors upon request. The macro is 
easy to use for applied researchers. It can be used to compute ADF confidence intervals for 
tests of any size and, in our implementation, the computation is only slightly more involved 
than for the NT confidence intervals. The macro also provides the NT confidence interval.  
 
Some considerations in the use of NT vs. ADF interval estimators 
 Both the NT and ADF interval estimators are based on large sample theory. Hence, 
large samples will be needed for either of the confidence intervals to be accurate. Because 
larger samples are needed to accurately estimate the fourth order sample moments involved 
in the ADF confidence intervals than the bivariate sample moments involved in the NT 
confidence intervals, in principle larger samples will be needed to accurately estimate the 
ADF confidence intervals compared to the NT confidence intervals. On the other hand, 
because ADF confidence intervals are robust to non-normality in large samples, we expect 
that when the test items present high skewness and/or kurtosis, the ADF confidence intervals 
will be more accurate than the NT confidence intervals. In other words, we expect that when 
the items are markedly non-normal and large samples are available the ADF confidence 
intervals will be more accurate than the NT confidence intervals. Yet, we expect that when 
the data approaches normality and sample size is small, the NT confidence intervals will be 
more accurate than the ADF confidence intervals. However, it is presently unknown under 
what conditions of sample size and non-normality the ADF confidence intervals are more 
accurate than NT confidence intervals. This will be investigated in the next sections by means 
of simulation.  
 Two simulation studies were performed. In the first simulation, data were simulated 
so that population alpha equals the reliability of the test score. In the second simulation, data 
were simulated so that population alpha underestimates the reliability of the test score. This 
occurs for instance when the model underlying the item scores is a one factor model with 
unequal factor loadings (e.g., McDonald, 1999).  
 Previous research (e.g., Hu, Bentler & Kano, 1992; Curran, West & Finch, 1996) has 
found that the ADF estimator performs poorly in confirmatory factor analysis models with 
small sample sizes.  In fact, they have recommended sample sizes over 1000 for ADF 
estimation.  However, our use of ADF theory differs from theirs in two key aspects. First, 
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there is only one parameter to be estimated in this case, coefficient alpha. As in Yuan et al. 
(2003), we estimate this parameter simply using sample coefficient alpha. Thus, we use ADF 
theory only in the estimation of the standard error and not in the point estimation of 
coefficient alpha.  Hu, Bentler, and Kano (1992) and Curran, West, and Finch (1996) used 
ADF theory to estimate both the parameters and standard errors.  Second, there is only one 
standard error to be computed here, the standard error of coefficient alpha. Even though the 
ADF asymptotic covariance matrix of the sample variances and covariances can be quite 
unstable in small samples, we concentrate its information to estimate a single standard error, 
that of coefficient alpha. These key differences between the present usage of ADF theory and 
previous research on the behavior of ADF theory in confirmatory factor analysis led us to 
believe that much smaller sample sizes would be needed than in previous studies. This was 
investigated by means of two simulation studies to which we now turn.   
 

2. A Monte Carlo investigation of NT vs. ADF confidence intervals when population 
alpha equals the reliability of the test 
 Most often tests and questionnaires are composed of Likert-type items and coefficient 
alpha is estimated from ordered categorical data. To increase the validity and generalizability 
of the study, ordinal data were used in the simulation study. The procedure used to generate 
the data was similar to that of Muthén and Kaplan (1985, 1992). It enables us to generate 
ordered categorical data with known population item skewness and kurtosis.  
 More specifically, the following sequence was used in the simulation studies 

1) Choose a correlation matrix Ρ and a set of thresholds τ. 
2) Generate multivariate normal data with mean zero and correlation matrix Ρ. 
3) Categorize the data using the set of thresholds τ. 
4) Compute the sample covariance matrix among the items, S, after categorization. 

Then, compute sample coefficient alpha using Equation (2), and its NT and ADF 
standard errors using Equations (5) and (7) in the Appendix. Also, compute NT and 
ADF confidence intervals as described in the previous section. 

5) Compute the true population covariance matrix among the items, Σ, after 
categorization.  Technical details on how to compute this matrix are given in the 
Appendix. 

6) Compute the population coefficient alpha via Equation (1) using Σ, the covariance 
matrix in the previous stage.  

7) Determine if confidence intervals cover the true alpha, underestimate it, or over-
estimate it.  

 In the first simulation study, Ρ had all its elements equal. Also, the same thresholds 
were used for all items. These choices result in a compound symmetric population covariance 
matrix Σ (i.e. equal covariances and equal variances) for the ordered categorical items (see 
the Appendix). In other words, Σ is consistent with a parallel items model. This simplifies the 
presentation of the findings as all items have a common skewness and kurtosis.  
 Overall, we investigated 144 conditions. These were obtained by crossing 

a) 4 sample sizes (50, 100, 200, and 400 respondents) 
b) 2 test lengths (5 and 20 items) 
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c) 3 different values for the common correlation in Ρ (.16, .36, and .64). This is 
equivalent to assuming a one-factor model for these correlations with common factor 
loadings of .4, .6, and .8, respectively. 

d) 6 item types (3 types consist of items with 2 categories, and 3 types consist of items 
with 5 categories), that varied in skewness and/or kurtosis. 

 The sample sizes were chosen to be very small to large in typical questionnaire 
development applications. Also, 5 and 20 items are the typical shortest and longest lengths 
for questionnaires measuring a single attribute. Finally, we include items with typical low (.4) 
to large (.8) factor loadings.  
 The item types used in the study, along with their population skewness and kurtosis 
are depicted in Figure 1. Details on how to compute the population item skewness and 
kurtosis are given in the Appendix.  These items types were chosen to be typical of a variety 
of applications. We report results only for positive skewness because the effect was 
symmetric for positive and negative skewness. Items of Types 1 to 3 consist of only two 
categories. Type 1 items have the highest skewness and kurtosis. The threshold was chosen 
such that only 10% of the respondents endorse the items. Type 2 items are endorsed by 15% 
of the respondents, resulting in smaller values of skewness and kurtosis. Items of Types 1 and 
2 are typical of applications where items are seldom endorsed. On the other hand, Type 3 
items are endorsed by 40% of the respondents. These items have low skewness and their 
kurtosis is smaller than that of a standard normal distribution 5. Items of Types 4 through 6 
consist of 5 categories. The skewness and kurtosis of Type 5 items closely match those of a 
standard normal distribution. Type 4 items are also symmetric (skewness = 0), however, the 
kurtosis is higher than that of a standard normal distribution. These items can be found in 
applications where the middle category reflects an undecided position and a large number of 
respondents choose this middle category. Finally, Type 6 items show a substantial amount of 
skewness and kurtosis.  For these items, the thresholds were chosen so that the probability of 
endorsing each category decreased as the category label increased.   

-------------------------------------------- 
Insert Figure 1 about here 

-------------------------------------------- 
 For each of the 144 conditions, 1000 replications were obtained. For each replication 
we computed the sample coefficient alpha, the NT and ADF standard errors, and the NT and 
ADF 95% confidence intervals. Then, for each condition, we computed (a) the relative bias 
of the point estimate of coefficient alpha as ˆmeanˆbias( ) = a- aa

a
, (b) the relative bias of the 

NT and ADF standard errors as ˆ ˆ

ˆ

mean std
ˆbias( )

std
= j a

a

-
j , and (c) the coverage of the NT and 

ADF 95% confidence intervals (i.e., the proportion of estimated confidence intervals that 
contain the true population alpha).  
 The accuracy of ADF vs. NT confidence intervals was assessed by their coverage. 
Coverage should be as close to the nominal level (.95 in our study) as possible. Larger 
coverage than the nominal level indicates that the estimated confidence intervals are too 
wide. They overestimate the variability of sample coefficient alpha. Smaller coverage than 
the nominal level indicates that the estimated confidence intervals are too narrow. They 
underestimate the variability of sample coefficient alpha. 
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 Note that there are two different population correlations within our framework: (a) the 
population correlations before categorizing the data (i.e., the elements of Ρ), and (b) the 
population correlations after categorizing the data (i.e., the correlations that can be obtained 
by dividing each covariance in Σ by the square root of the product of the corresponding 
diagonal elements of Σ). We refer to the former as underlying correlations, and to the latter as 
inter-item population correlations.  
 Table 1 summarizes the relationship between the average inter-item correlations in the 
population after categorizing the data and the underlying correlation before categorization.  
The average inter-item correlation is the extent of interrelatedness (i.e. internal consistency) 
among the items (Cortina, 1993).  There are three levels for the average population inter-item 
correlation corresponding to the three underlying correlations.  Table 1 also summarizes the 
population alpha corresponding to the three levels of the average population inter-item 
correlations. As may be seen in this table, the population coefficient alpha used in our study 
ranges from .25 to .97, and the population inter-item correlations range from .06 to .59.  
Thus, in the present study we are considering a wide range of values for both the population 
coefficient alpha and the population inter-item correlations. 

--------------------------------------------------- 
Insert Table 1 about here 

--------------------------------------------------- 
 
Empirical behavior of sample coefficient alpha: Bias and sampling variability 
 To our knowledge, the behavior of the point estimate of coefficient alpha when 
computed from ordered categorical data under conditions of high skewness and kurtosis has 
never been investigated. The results for the bias of the point estimates of coefficient alpha are 
best depicted graphically as a function of the true population alpha. The results for the 144 
conditions investigated are shown in Figure 2.  
 Three trends are readily apparent from Figure 2.  First, bias increases with decreasing 
true population alpha.  Second, bias is consistently negative. In other words, the point 
estimate of coefficient alpha consistently underestimates the true population alpha. Third, the 
variability of the bias increases with decreasing sample size. For fixed sample size and true 
reliability, bias increases with increased kurtosis and increased skewness. This is not shown 
in the figure for ease of presentation. Nevertheless, it is reassuring to see in this figure that 
the coefficient alpha point estimates are remarkably robust to skewness and kurtosis for the 
sample sizes considered here provided sample size is larger than 100. In this case relative bias 
is less than 5% whenever population alpha is larger than .3.  

-------------------------------------------- 
Insert Figures 2 and 3 about here 

-------------------------------------------- 
 Figure 3 depicts graphically the variability of the point estimate of coefficient alpha as 
a function of the true population alpha. As can be seen in this figure, the variability of the 
point estimate of coefficient alpha is the result of the true population coefficient alpha and 
sample size. As the population coefficient alpha approaches 1.0, the variability of the point 
estimate of coefficient alpha approaches zero. As the population coefficient alpha becomes 
smaller, the variability of the point estimates of coefficient alpha increases. The increase in 
variability is larger when the sample size is small. An interval estimator for coefficient alpha 
is most needed when the variability of the point estimate of coefficient alpha is largest. In 
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those cases, a point estimator can be quite misleading. Figure 3 clearly suggests that an 
interval estimator is most useful when sample size is small and the population coefficient 
alpha is not large.  
 
Do NT and ADF standard errors accurately estimate the variability of coefficient alpha? 
 The relative bias of the estimated standard errors for all conditions investigated is 
reported in Tables 2 and 3. Results for NT standard errors are displayed in Table 2, and 
results for ADF standard errors are displayed in Table 3. 

-------------------------------------------- 
Insert Tables 2 and 3 about here 

-------------------------------------------- 
 As can be seen in Table 3, the ADF standard errors seldom overestimate the 
variability of sample coefficient alpha. When it does occur, the overestimation is small (at 
most 3%). More generally, the ADF standard errors underestimate the variability of sample 
coefficient alpha. The bias can be substantial (-30%) but on average it is small (-5%). The 
largest amount of bias appears for the smallest sample size considered. For sample sizes of 
200 observations, relative bias is at most -9%. 
 NT standard errors (see Table 2) can also overestimate the variability of sample 
coefficient alpha. As in the case of ADF standard errors, the overestimation of NT standard 
errors is small (at most 4%). More generally, the NT standard errors underestimate the 
variability of sample coefficient alpha. The underestimation can be very severe (up to -55%). 
Overall, the average bias is unacceptably large (-14%). Bias increases with increasing 
skewness as well as with an increasing average inter-item correlation. For the two most 
extreme skewness conditions, and the highest level of average inter-item correlation 
considered (.36 to .59), bias is at least -30%. 
 As can be seen by comparing Tables 2 and 3, of the 144 different conditions 
investigated, the NT standard errors were more accurate than the ADF standard errors in 45 
conditions (31.3% of the times). NT standard errors were more accurate than ADF standard 
errors when skewness was less than .5 (nearly symmetrical items) and the average inter-item 
correlation was low (.06 to .15) or medium (.16 to .33). Even in these cases the differences 
were very small. The largest difference in favor of NT standard errors is 5%. In contrast, in 
all remaining conditions (68.7% of the times), the ADF standard errors were considerably 
more accurate than NT standard errors. The average difference in favor of ADF standard 
errors is 12%, with a maximum of 44%.  
 
Accuracy of NT and ADF interval estimators 
 We show in Figure 4 the coverage rates of NT and ADF confidence intervals as a 
function of skewness. We see in Figure 4 how the coverage rates of NT confidence intervals 
decrease dramatically as a function of the combination of increasing skewness and increasing 
average inter-item correlations. The coverage rates can be as low as .68 when items are 
severely skewed (Type 1 items) and the average inter-item correlation is high (.36 to .59). 

------------------------------------------------------ 
Insert Figure 4 and Table 4 about here 

------------------------------------------------------ 
 We also show in this figure the coverage rates of ADF confidence intervals as a 
function of item skewness by sample size. We clearly see in this figure that ADF confidence 
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intervals behave much better than NT confidence intervals. The effect of skewness on their 
coverage is mild. The effect of sample size is more important. For sample sizes of at least 200 
observations, ADF coverage rates are at least .91, regardless of item skewness. For a sample 
size of 50, the smallest coverage rate is .82.  The maximum coverage rate is .96, as was also 
the case for NT intervals.  
 Further insight is obtained by inspecting Table 4. In this table we provide the average 
coverage for NT and ADF 95% confidence intervals at each level of sample size and 
skewness. This table reveals that the average coverage of ADF intervals is as good as or 
better than the average coverage of NT intervals whenever item skewness is larger than .5 
regardless of sample size (i.e. sample size ≥ 50). Also, ADF intervals are uniformly more 
accurate than NT intervals with large samples (≥ 400) (i.e., regardless of item skewness). 
When sample size is smaller than 400 and item skewness is smaller than .5 the behavior of 
both methods is almost indistinguishable. NT confidence intervals are more accurate than 
ADF confidence intervals only when the items are perfectly symmetric (skewness = 0) and 
sample size is 50.  All in all, the empirical behavior of ADF confidence intervals is better 
than that of the NT confidence intervals. 
 
3. A Monte Carlo investigation of NT vs. ADF confidence intervals when population 
coefficient alpha underestimates the reliability of the test 
 When the population covariances are not equal, then population coefficient alpha 
generally underestimates the true reliability of a  score test 6. As a result, on average, sample 
coefficient alpha will also underestimate the true reliability, and so should the NT and ADF 
confidence intervals for coefficient alpha. Here, we investigate the empirical behavior of 
these intervals under different conditions. In particular, we crossed 

a) 4 sample sizes (50, 100, 400, and 1000), 
b) 3 test lengths (7, 14, and 21 items), and 
c) the 6 item types used in the previous simulation (3 types consist of items with 2 

categories, and 3 types consist of items with 5 categories), 
resulting in 72 conditions.  We categorized the data using the same thresholds as in our 
previous simulation. Thus, items with the same probabilities and therefore with the same 
values for skewness and kurtosis were used (see Figure 1).  
 We used the same procedure described in the previous section except for two 
differences. First, in Step 1) we used a correlation matrix Ρ with a one factor model structure 
with factor loadings of .3, .4, .5, .6, .7, .8, and .9.  Thus, the data were generated assuming a 
congeneric measurement model.  For the test length with 14 items, these loadings were 
repeated once and for the test length with 21 items, they were repeated twice. Second, Steps 
6) and 7) now consist of two parts, as we compute both the population coefficient alpha and 
population reliability (in this case population alpha underestimates reliability). We then 
examine the behavior of the ADF and NT confidence intervals with respect to both 
population parameters.  
 Under the conditions of this simulation study, true reliability is obtained using 
coefficient omega (see McDonald, 1999).  Details on how the true reliabilities for each of the 
experimental conditions can be computed are given in the Appendix. Coefficient omega, ω, 
(i.e. true reliability) ranges from .60 to .92.  To obtain smaller true reliabilities we could have 
used fewer items and smaller factor loadings.   
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 Also, for each condition, we computed (a) the absolute bias of sample coefficient 
alpha in estimating the true reliability as ˆmean a- w , (b) the relative bias of sample 

coefficient alpha in estimating the true reliability ˆmean a- w
w

,  (c) the proportion of estimated 

NT and ADF 95% confidence intervals that contain the true population alpha (i.e. coverage of 
alpha), and (d) the proportion of estimated NT and ADF 95% confidence intervals that 
contain the true population reliability (i.e. coverage of omega). 
 
Empirical behavior of sample coefficient alpha: Bias 
 With these factor loadings, the absolute bias of population alpha ranges from -.01 to -
.02, with a median of -.01. Thus, the bias of population alpha is small as one would expect in 
typical applications where a congeneric model holds (McDonald, 1999).  
 As for the bias of sample alpha in this setup, the same trends observed in the previous 
simulation study were found in this case.  First, the bias of sample coefficient alpha in 
estimating population reliability increases with decreasing population reliability. Second, bias 
is consistently negative. In other words, the point estimate of coefficient alpha consistently 
underestimates the true population reliability. Third, the variability of the bias increases with 
decreasing sample size. For fixed sample size and true reliability, bias increases with 
increased kurtosis and increased skewness.  
 However, now the magnitude of the bias is larger. In the first simulation, when 
population coefficient alpha equals reliability, the bias of sample alpha was negligible 
(relative bias less than 5%) provided that (a) sample size was equal or larger than 100, and (b) 
population reliability was larger than .3. In contrast, when population coefficient alpha 
underestimates the reliability of test scores, relative bias is negligible provided sample size is 
larger than 100 only whenever population reliability is larger than .6. This is because in this 
simulation sample alpha combines the effects of two sources of downward bias. One source 
of downward bias is the bias of the true population alpha. The second source of downward 
bias is induced by using a small sample size.  
 The results of both sources of downward bias are displayed in Figure 5. In this figure 
we have plotted the absolute bias of sample alpha as a function of the true population 
reliability by sample size. Because the absolute bias of population alpha equals (to two 
significant digits) the estimated bias of sample alpha when sample size is 1000, the points in 
this figure for sample size 1000 are also the absolute bias of population alpha. We see in this 
figure that absolute bias of population alpha ranges from -.01 to -.02, with a median of -.01. 
Thus, population alpha underestimates only slightly population reliability under the 
conditions of our simulation. We also see in this figure that the underestimation does not 
increase much when sample size is 400 or larger. However, the underestimation increases 
substantially for sample size 100 if the population reliability is .6 or smaller.  
 
 
Do NT and ADF standard errors accurately estimate the variability of coefficient alpha? 
 It is interesting to investigate how accurately NT and ADF standard errors estimate 
the variability of sample alpha when population alpha is a biased estimator of reliability. To 
investigate this, we simply plotted the mean standard errors vs. the standard deviations of 
sample alpha for each of the conditions investigated. These are shown separately for NT and 
ADF in Figure 6.  
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-------------------------------------------- 
Insert Figures 5 and 6 about here 

-------------------------------------------- 
 Ideally, for every condition, the mean of the standard errors should be equal to the 
standard deviation of sample alpha. This ideal situation has been plotted along the diagonal of 
the scatterplot. Points on the diagonal or very close to the diagonal indicate that the standard 
error (either NT or ADF) accurately estimate the variability of sample alpha. Points below the 
line indicate underestimation of the variability of sample alpha (leading to too narrow 
confidence intervals). Points above the line indicate overestimation of the variability of 
sample alpha (leading to too wide confidence intervals). As can be seen in Figure 5, neither 
NT or ADF standard errors are too large. Also, the accuracy of NT standard errors depends 
on the kurtosis of the items, whereas the accuracy of ADF standard errors depends on sample 
size. NT standard errors negligibly underestimate the variability of alpha when kurtosis was 
less than 4. However, when kurtosis was larger than 4, the underestimation of NT standard 
errors can not longer be neglected, particularly as the variability of sample alpha increases.  
On the other hand, we see in Figure 6 that for sample sizes greater than or equal to 400, ADF 
standard errors are exactly on target. ADF standard errors underestimate the variability of 
sample alpha for smaller sample sizes, but for sample sizes over 100 ADF standard errors are 
more accurate than NT standard errors.  
 We next investigate how the bias of sample coefficient alpha and the accuracy of 
standard errors affect the accuracy of the NT and ADF interval estimators.  
 
Do NT and ADF interval estimators accurately estimate population coefficient alpha? 
 To answer this question, we show graphically in Figure 7 the percentage of times that 
95% confidence intervals for alpha include population alpha as a function of kurtosis and 
sample size. In this figure coverage rates should be close to nominal rates (95%). We see in 
this Figure that for items with kurtosis less than 4, the behavior of both estimators is 
somewhat similar: both estimators accurately estimate population coefficient alpha, with NT 
confidence intervals being slightly more accurate than ADF confidence intervals when 
sample size is 50.  
 However, for items with kurtosis higher than 4, coverage rates of NT confidence 
intervals decrease dramatically for increasing kurtosis, regardless of sample size. On the other 
hand, ADF confidence intervals remain accurate regardless of kurtosis provided that sample 
size is at least 400. As sample size decreases, ADF intervals become increasingly more 
inaccurate. However, they maintain a coverage rate of at least 90% when sample size is 100.  
Further insight is obtained by inspecting Table 5. In this table we provide the average 
coverage for NT and ADF 95% confidence intervals at each level of sample size and item 
kurtosis. This table reveals that the average coverage of ADF intervals is as good as or better 
than the average coverage of NT intervals whenever sample size is 400. Even with samples of 
size 100, ADF confidence intervals are preferable to NT intervals as the NT intervals 
underestimate coefficient alpha when kurtosis is larger than 4. Only at samples of size 50 
does NT confidence intervals consistently outperform ADF intervals when kurtosis is less 
than 4, and even in this situation the advantage of NT over ADF intervals is small.  

--------------------------------------------------------------- 
Insert Figure 7 and Table 5 about here 

-------------------------------------------------------------- 
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 All in all, ADF intervals are preferable to NT intervals. They portray accurately the 
population alpha even when this underestimates true reliability provided sample size is at 
least 100.  However, in the conditions investigated population alpha underestimates the true 
reliability, and hence it is of interest to investigate the extent to which ADF and NT 
confidence intervals are able to capture true reliability.  
 
Do NT and ADF interval estimators accurately estimate population reliability? 
 Figure 8 shows the percentage of times (coverage) that 95% confidence intervals for 
coefficient alpha include the true reliability of the test scores as a function of kurtosis and 
sample size. We see in this Figure that for items with kurtosis less than 4, the behavior of 
both estimators is somewhat similar. Confidence intervals contain the true reliability only 
when sample size is less than 400. For larger sample sizes, confidence intervals for alpha 
increasingly miss true reliability.  

-------------------------------------------- 
Insert Figure 8 about here 

-------------------------------------------- 
 For kurtosis larger than 4 the behavior of both confidence intervals is different. NT 
confidence intervals miss population reliability and they do so with increasing sample size. 
On the other hand, ADF intervals for population alpha are reasonably accurate at including 
the true population reliability (coverage over 90%) provided sample size is larger than 100. 
They are considerably more accurate than NT intervals even with a sample size of 50. 
 To understand these findings notice that the confidence intervals for coefficient alpha 
can be used to test the null hypothesis that the population alpha equals a fixed value; for 
instance, α = .60. In Figure 7 we examine whether the confidence intervals for alpha include 
the population alpha. This is equivalent to examining the empirical rejection rates at an (1 - 
.95) = 5%  level of a statistic that tests for each condition whether α = α0, where α0 is the 
population alpha in that condition. In contrast, in Figure 8 we examine whether the 
confidence intervals for alpha include the population reliability, which is given by coefficient 
omega, say ω0. This is equivalent to examining the empirical rejection rates at a 5%  level of 
a statistic that tests for each condition whether α = ω0. where ω0 is the population reliability 
in that condition. However, in this simulation study population alpha is smaller than 
population reliability. Thus, the null hypothesis is false, and the coverage rates shown in 
Figure 8 are equivalent to empirical power rates.  
 Figure 8 shows that when items are close to being normally distributed both 
confidence intervals have power to distinguish population alpha from the true reliability when 
sample size is large. In other words, when sample size is large and the items are close to 
being normally distributed, both interval estimators will reject the null hypothesis that 
population alpha equals the true population reliability. On the other hand, when kurtosis is 
higher than 4, the ADF confidence intervals, but not the NT confidence intervals will contain 
the true reliability. The ADF confidence interval contains the true reliability in this case 
because it does not have enough power to distinguish population alpha from true reliability 
even with a sample of size 1000. However, the NT confidence intervals do not contain the 
true reliability because, as we have seen in Figure 7, they do not contain alpha.  
These findings are interesting. A confidence interval is most useful when sample coefficient 
alpha underestimates true reliability the most, which is when sample size is small. It is 
needed the least when sample size is large (i.e. 1000) as in this case sample alpha 
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underestimates true reliability the least. When sample size is small, the ADF interval 
estimator may compensate for the bias of sample alpha as the rate with which it contains true 
reliability is acceptable (over 90% for 95% confidence intervals). However, when sample size 
is large and items are close to being normally distributed both the NT and ADF intervals will 
miss true reliability. By how much? On average by the difference between true reliability and 
population coefficient alpha. Under the conditions of our simulation study this difference is at 
most .02. 
 
4. Discussion 
 Coefficient alpha equals the reliability of the test score when the items are tau-
equivalent, that is, when they fit a one-factor model with equal factor loadings. In 
applications, this model seldom fits well. In this case, applied researchers face two options: a) 
find a better fitting model and use a reliability estimate based on such model, or b) use 
coefficient alpha.  
 If a good fitting model can be found, the use of a model-based reliability estimate is 
clearly the best option. For instance, if a one factor model is found to fit the data well, then 
the reliability of the test score is given by coefficient omega and the applied researcher 
should employ this coefficient. Although this approach is preferable in principle, there may 
be practical difficulties in implementing it. For instance, if the best fitting model is a 
hierarchical factor analysis model, it may not be straightforward to many applied researchers 
to figure out how to compute a reliability estimate based on the estimated parameters of such 
model. Also, model-based reliability estimates depend on the method used to estimate the 
model parameters. Thus, for instance, different coefficient omega estimates will be obtained 
for the same dataset depending on the method used to estimate the model parameters: ADF, 
maximum likelihood (ML), unweighted least squares (ULS), etc. There has not been much 
research on which of these parameter estimation methods lead to the most accurate reliability 
estimate.  
 Perhaps the most common situation in applications is that no good fitting model can 
be found (i.e., the model is rejected by the chi-square test statistic). That is, the best fitting 
model presents some amount of model misfit that can not be attributed to chance. In this case, 
an applied researcher can still compute a model-based reliability estimate based on her best 
fitting model. Such a model-based reliability estimator will be biased. The direction and 
magnitude of this bias will be unknown as it depends on the direction and magnitude of the 
discrepancy between the best fitting model and the unknown true model. When no good 
fitting model can be found, the use of coefficient alpha as an estimator of the true reliability 
of the test score becomes very attractive for two reasons. First, coefficient alpha is easy to 
compute. Second, if the mild conditions discussed for instance in Bentler (in press) are 
satisfied, the direction of the bias of coefficient alpha is known: It provides a conservative 
estimate of the true reliability. These reasons explain the popularity of alpha among applied 
researchers.  
 Yet, as with any other statistic, sample coefficient alpha is subject to variability 
around its true parameter, in this case, the population coefficient alpha. The variability of 
sample coefficient alpha is a function of sample size and the true population coefficient 
alpha. When the sample size is small and the true population coefficient alpha is not large, the 
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sample coefficient alpha point estimate may provide a misleading impression of the true 
population alpha, and hence of the reliability of the test score.  
Furthermore, sample coefficient alpha is consistently biased downwards. Hence it will yield a 
misleading impression of poor reliability. The magnitude of the bias is greatest precisely 
when the variability of sample alpha is greatest (small population reliability and small sample 
size). The magnitude is negligible when the model assumptions underlying alpha are met 
(i.e., when coefficient alpha equals the true reliability). However as coefficient alpha 
increasingly underestimates reliability, the magnitude of the bias need no be negligible.  
 In order to take into account the variability of sample alpha, an interval estimator 
should be used instead of a point estimate. In this paper, we have investigated the empirical 
performance of two confidence interval estimators for population alpha under different 
conditions of skewness and kurtosis, as well as sample size: 1) the confidence intervals 
proposed by van Zyl et al. (2000) which assumes that items are normally distributed (NT 
intervals), and 2) the confidence intervals proposed by Yuan et al. (2003) based on 
asymptotic distribution free assumptions (ADF intervals). Our results suggest that when the 
model assumptions underlying alpha are met, ADF intervals are to be preferred to NT 
intervals provided sample size is larger than 100 observations. In this case, the empirical 
coverage rate of the ADF confidence intervals is acceptable (over .90 for 95% confidence 
intervals) regardless of the skewness and kurtosis of the items. Even with samples of size 50, 
the NT confidence intervals outperform the ADF confidence intervals only when skewness is 
zero. 
 Similar results for the coverage of alpha were found when we generated data where 
coefficient alpha underestimates true reliability. Also, our simulations revealed that the 
confidence intervals for alpha may contain the true reliability. In particular, we found that if 
the bias of population alpha is small, as in typical applications where a congeneric 
measurement model holds, the ADF intervals contain true reliability when item kurtosis is 
larger than 4. If item kurtosis is smaller than 4 (i.e., close to being normally distributed), ADF 
intervals will also contain population reliability for samples smaller than 400. For larger 
samples, the ADF intervals will underestimate very slightly population reliability because the 
intervals have power to distinguish between true reliability and population alpha. For near 
normally distributed items, the behavior of NT intervals is similar. However, for items with 
kurtosis larger than 4, NT confidence interval misses the true reliability of the test because it 
does not even contain coefficient alpha.  
 As with any other simulation study, our study is limited by the specification of the 
conditions employed. For instance, when generating congeneric items, population alpha only 
underestimated population reliability slightly, by a difference of between -.02 and -.01. This 
amount of misspecification was chosen to be typical in applications (McDonald, 1999). We 
feel that further simulation studies are needed to explore if the robustness of the interval 
estimators for coefficient alpha hold (i.e., if they contain population coefficient alpha) under 
alternative setups of model misspecification (such as bifactor models). Also, as the bias of 
population alpha increases, one should not expect confidence intervals for alpha to include 
the population reliability. Finally, further research should compare the symmetric confidence 
intervals employed here against asymmetric confidence intervals. This is because, as a 
reviewer pointed out, the upper limit of the symmetric confidence intervals for alpha may 
exceed the upper bound of one when sample alpha is near one.  
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5. Conclusions 
 Following Duhachek and Iacobucci (2004), we strongly encourage researchers to 
report confidence intervals as well as point estimates of coefficient alpha when evaluating the 
reliability of a test score. Failing to do so may result in an underestimation of the true 
population coefficient alpha of the test score, leading to rejection of reliable tests. Because 
test and questionnaire items are usually ordered categorical variables, they may show 
considerable skewness and kurtosis, thereby violating the normality assumption (see Micceri, 
1989). Accurately estimating the standard errors without normality assumptions requires 
larger samples, but our results indicate that for sample sizes over 100 the ADF confidence 
intervals provide an accurate perspective of population alpha. Also, for sample sizes over 100 
they are definitely preferred to NT confidence intervals if the items show skewness over 1 or 
kurtosis over 4. NT confidence intervals can be safely used within those bounds (i.e., when 
items are approximately normally distributed). Also, NT intervals can be used with very 
small sample sizes provided items are approximately normally distributed. Duhachek and 
Iacobucci (2004) report that accurate confidence intervals can be obtained with sample sizes 
as small as 30. 
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Appendix: Technical details 
 
Computation of the NT and ADF standard errors of sample alpha 

 In matrix notation, population alpha is ( )tr1
1

p
p

a
æ ö÷ç= - ÷ç ÷ç ¢è ø- 1 1

S
S

, where Σ is the 

covariance matrix of the items in the population, tr() denotes the trace operator, and 1 is a p × 

1 vector of ones. Sample alpha is ( )trˆ 1
1

p
p

a
æ ö÷ç= - ÷ç ÷÷ç ¢è ø-

S
1 S1

, where S denotes the sample 

covariance matrix.  
 Let s = vecs(S) and let σ = vecs(Σ), where vecs() is an operator that takes the elements 
of a symmetric matrix on or below the diagonal and stacks them onto a column vector. 
Asymptotically (i.e., in large samples), the vector N s  is normally distributed with mean σ 
and covariance matrix Γ of dimensions q × q. Because â  is a function of s, asymptotically, 
â  is normally distributed with mean α and variance 

 2 1
N

d Gd¢=j  (3) 

where d
s

¶¢=
¢¶

a  is a 1 × q vector of derivatives of α with respect to σ. The elements of δ are: 
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. (4) 

 The above results hold under NT assumptions, but also under ADF assumptions. 
However, the Γ matrix differs under NT and ADF assumptions. Henceforth, we shall use ΓNT 
and ΓADF to distinguish them.  
 If we are willing to assume that the data are normally distributed then Equation (3) 
can be estimated as (van Zyl, et al., 2000) 

 
( )

( ) ( ) ( )( ) ( )( )
( )

22 22
2

2 3

2 t r t r 2 t r1ˆ
1

p
N pN T

é ù¢ ¢+ -ê úë û=
- ¢

1 S1 S S S 1 S 1

1 S1
j . (5) 

On the other hand, estimation of the asymptotic variance of sample coefficient alpha under 
ADF assumptions requires estimating ΓADF. Let yi be the p × 1 vector of data for observation 

i, and y  be the p × 1 vector of sample means. Also, let ( )( )vecsi i i
é ù¢= - -ê ú
ê úë û

s y y y y  be a q × 1 

vector of squared deviations from the mean. Then, ΓADF can be estimated (Satorra & Bentler, 
1994) as 
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 ( )( )
1

1ˆ
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N
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- å s s s s . (6) 

However, an estimate of the asymptotic variance of coefficient alpha under ADF assumptions 
can be obtained directly without storing ˆ

ADFG  using 
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To see this insert Equation (6) in Equation (3),  
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but since d̂¢ is a 1 × q vector and ( )i -s s  is a q × 1 vector, ( )ˆ
id¢ -s s  is a scalar. As a result, 

( )( ) ( )( )2ˆ ˆ ˆ
i i id d d¢¢ ¢- - = -s s s s s s , and we obtain Equation (7). Our SAS macro computes the 

NT standard error of â  via Equation (5), and the ADF standard error of â  via Equation (7).  
 
Computation of population reliability for categorized normal variables 
 To compute the population coefficient alpha, the population variances and 
covariances are needed. In our simulation study, each observed variable Yi, is multinomial 
with m = 2 or, 5 categories. The categories are scored as k = 0, ..., m - 1. For categorical 
variables  
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 Data is generated as follows: First we generate multivariate normal data. In the first 
simulation we used ( )* ,N Rz 0: , where ( )1R ¢= + -11 Ir r . That is, the covariance matrix 
used to generate data is a correlation matrix with a common correlation. The normal variables 
are categorized via the threshold relationship Yi = ki  if 1

*
k ki i iz

+
< <t t , ki = 0, ..., K - 1, where 

0
,

Ki i= - ¥ = ¥t t . The thresholds were selected so that the items had the marginal 
probabilities shown in Figure 1. In the second simulation we used the same procedure except 
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that to generate multivariate normal data we used ( )diagR l l l l¢ ¢= + -I  where 
( ).3, .4, .5, .6, .7, .8, .9l ¢=  when p = 7. That is, in the second simulation we generated data 

using a correlation matrix with a one-factor model structure.  
Under this model of ordered categorized normal variables,  
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where ijr  is an element of Ρ. 
 The population skewness and kurtosis reported in Figure 1 were computed using  
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and µi is the population mean given in Equation (10).  
 Also, the population correlation between two items can be obtained using ij

ii jj

s
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 and 

Equations (8) and (9). Finally, the average population inter-item correlation is simply  
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where ( )1
2
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 To illustrate, consider the condition with p = 5 items of type 3 in Figure 1 and  
( )1R ¢= + -11 Ir r  where ρ = .8. We generated multivariate normal data with mean zero and 

correlation structure Ρ. The data were dichotomized using the threshold τ = .253, as this is the 
threshold that yields type 3 items. To obtain the population α we computed the population 
covariance matrix using Equations (8) to (12). For this condition, all the variances in Σ are 
equal to .24, and all covariances are equal to .11. As a result, the population α is .796. Also, 
using Equation (14), the average population inter-item correlation is .438. When 

( )1R ¢= + -11 Ir r , the covariances in Σ are all equal and population alpha equals the 
reliability of the test score. 
 Consider now the case where ( )diagR l l l l¢ ¢= + -I . In this case, the covariances 
in Σ are not equal and as a result population alpha underestimates reliability. When 
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( )diagR l l l l¢ ¢= + -I  and the same thresholds are used for all items, the population 
covariance matrix Σ obtained using Equations (8) to (12) can be fitted exactly by a one-factor 
model, say S l l Y¢= +%% . In this decomposition, l l¹% , where l  are the factor loadings 
used to generate the data. Because Σ admits a one-factor model decomposition, population 
reliability is given by coefficient omega 

 

2

1
2

2

1 1

p

i
i

p p

i i
i i

=

= =

æ ö÷ç ÷ç ÷÷çè ø=
æ ö÷ç +÷ç ÷÷çè ø

å

å å

l
w

l y

%

%
 (15) 

where 2
iy  is the element of the diagonal matrix Ψ corresponding to the ith item. As the model 

fits exactly in the population, any method can be used to estimate and l Y% from Σ. They all 
yield the same result. 
 To illustrate, consider the condition with p = 7 items of type 3 in Figure 1. Before 
dichotomization the simulated data has population correlation matrix 

( )diagR l l l l¢ ¢= + -I  with ( ).3, .4, .5, .6, .7, .8, .9l ¢= . We dichotomized the data using the 
threshold τ = .253 to obtain type 3 items. Now, using Equations (8) to (12) we obtain the 
following population covariance matrix 

 

.24 .02 .02 .03 .03 .04 .04

.02 .24 .03 .04 .04 .05 .06

.02 .03 .24 .05 .05 .06 .06

.03 .04 .05 .24 .07 .08 .09

.03 .04 .05 .07 .24 .09 .10

.04 .05 .06 .08 .09 .24 .24

.04 .06 .07 .09 .10 .12 .24

S

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç= ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷çççççççè ø

÷÷÷÷÷÷÷

. 

This Σ admits a one-factor model decomposition where ( ).11, .15, .19, .23, .28, .33, .37l ¢=%  and 
the elements of the diagonal matrix Ψ are ( ).22, .22, .20, .18, .16, .13, .10 . Thus, for this condition 
the population α is .677 and the population reliability is ω = .692. 
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Footnotes 
 
1 Only a positive definite covariance matrix is assumed. All previous derivations, which assumed 
particular models (e.g. tau equivalence) for the covariance matrix, can be treated as special cases of 
their result. 
2 Bootstrap confidence intervals are not considered in this study. On the one hand, there are a 
variety of procedures that should be investigated (for an overview see Hartmann, 2005). On the 
other hand, they are computationally more intensive. Most importantly, differences between ADF 
and bootstrap confidence intervals in Yuan et al.’s (2003) study are in all cases in the third decimal, a 
negligible difference for practical purposes 
3 The formula for coefficient omega can be found in the Appendix. 
4 ADF estimation replaces the normality assumption by the milder assumption that eighth order 
moments of the distribution of the data are finite.  This assumption is satisfied in the case of Likert-
type items, where the distribution of each item is multinomial. The assumption ensures that the 
fourth order sample moments are consistent estimators of their population counterparts (Browne, 
1984). 
5 The skewness and kurtosis of a standard normal distribution are 0 and 3, respectively. 
6 Coefficient alpha is a lower bound to the reliability of a test score when (a) the items can be 
decomposed as Xi = Ti + Ei with Ti and Ei being uncorrelated, and (b) the covariance matrix of the 
Ei‘s is diagonal (Bentler, in press). 
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Table 1 
Relationship between underlying polychoric correlation (ρ), the average population inter-item 
correlation ( r ), and the population coefficient alpha (α) 
 
 

Average population inter-item correlation ( r ) Population α 
Polychoric  
corr. (ρ) Levels Mean Min. Max. Mean Min. Max.
.16 Low .11 .06 .15 .53 .25 .77 
.36 Medium .25 .16 .33 .74 .49 .91 
.64 High .48 .36 .59 .88 .73 .97 
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Table 2 
Relative bias of NT standard errors 
 

2.667 1.960 .980 .408 0  skewness 
kurtosis 
 r        N         p 

8.111 4.843 2.800 1.167 2.500 3.878 

5  -.15 -.15 -.05 -.07 -.07 -.08 50 
20  -.24 -.20 -.11 -.08 -.06 -.05 
5  -.17 -.12 -.07 -.01 -.03 .01 100 
20  -.24 -.20 -.09 .00 -.02 -.07 
5  -.18 -.15 -.06 .01 -.03 .01 200 
20  -.23 -.16 -.08 -.01 -.01 -.03 
5  -.17 -.13 -.04 -.01 .04 .01 

lo
w

 
  

400 
20  -.21 -.14 -.06 -.01 -.01 -.02 
5  -.36 -.27 -.11 -.04 -.03 -.05 50 
20  -.40 -.31 -.12 -.02 -.07 -.09 
5  -.35 -.22 -.10 -.04 -.01 -.04 100 
20  -.40 -.31 -.12 .01 -.01 -.05 
5  -.33 -.25 -.11 -.03 .01 -.03 200 
20  -.39 -.28 -.11 .00 -.01 -.04 
5  -.31 -.22 -.08 -.01 .03 .02 

m
ed

iu
m

 
  

400 
20  -.36 -.26 -.10 .00 -.01 -.04 
5  -.53 -.42 -.18 -.07 -.05 -.13 50 
20  -.55 -.41 -.16 -.04 .02 -.13 
5  -.46 -.35 -.13 -.06 .00 -.09 100 
20  -.51 -.38 -.15 -.02 .01 -.10 
5  -.45 -.34 -.13 -.08 -.01 -.07 200 
20  -.46 -.34 -.14 -.05 .00 -.09 
5  -.43 -.31 -.10 -.05 .02 -.04 

hi
gh

 
  

400 
20  -.45 -.34 -.14 -.05 .00 -.09 

 
Notes: p = number of variables, N = sample size, r  = average population inter-item 
correlation 
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Table 3 
Relative bias of ADF standard errors 
 

2.667 1.960 .980 .408 0  skewness 
kurtosis 
 r        N         p 

8.111 4.843 2.800 1.167 2.500 3.878 

5  -.16 -.14 -.07 -.08 -.10 -.13 50 
20  -.19 -.17 -.13 -.12 -.10 -.09 
5  -.12 -.08 -.06 -.02 -.04 -.01 100 
20  -.13 -.12 -.08 -.03 -.04 -.09 
5  -.07 -.08 -.04 .01 -.03 .00 200 
20  -.07 -.05 -.05 -.03 -.03 -.04 
5  -.04 -.03 .00 .00 .03 .00 

lo
w

 

400 
20  -.02 -.01 -.02 -.02 -.02 -.03 
5  -.26 -.17 -.08 -.04 -.06 -.09 50 
20  -.25 -.18 -.10 -.06 -.11 -.13 
5  -.16 -.05 -.05 -.03 -.03 -.05 100 
20  -.17 -.13 -.07 -.01 -.05 -.06 
5  -.08 -.05 -.04 -.02 -.01 -.03 200 
20  -.09 -.05 -.04 -.02 -.03 -.04 
5  -.02 .00 .00 .00 .02 .03 

m
ed

iu
m

 

400 
20  -.01 -.01 -.02 -.02 -.03 -.03 
5  -.30 -.21 -.10 -.02 -.09 -.11 50 
20  -.30 -.17 -.09 -.02 -.02 -.11 
5  -.12 -.06 -.02 .00 -.03 -.05 100 
20  -.16 -.09 -.05 -.01 -.03 -.06 
5  -.06 -.03 -.01 -.02 -.03 -.02 200 
20  -.04 -.01 -.03 -.03 -.03 -.03 
5  -.01 .02 .02 .02 .00 .02 

hi
gh

 
  

400 
20  -.01 -.02 -.02 -.03 -.04 -.03 

 
Notes: p = number of variables, N = sample size, r  = average population inter-item 
correlation 
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Table 4 
Average coverage rates for NT and ADF 95% confidence intervals at each level of sample 
size and skewness when population coefficient alpha equals true reliability 
 
 
 

skewness 
Sample size method 0 .41 .98 1.96 2.67 

ADF .92 .94 .92 .89 .86 
50 

NT .94 .94 .92 .85 .80 

ADF .94 .94 .93 .92 .90 
100 

NT .94 .94 .92 .86 .80 

ADF .94 .94 .94 .93 .93 
200 

NT .94 .94 .92 .86 .80 

ADF .95 .95 .95 .95 .94 
400 

NT .94 .94 .93 .87 .81 

 
 
Note: Coverage rates should be close to nominal rates (.95). We have shaded the most 
accurate method for each combination of sample size and skewness. 
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Table 5 
Average coverage of population coefficient alpha for NT and ADF 95% confidence intervals 
at each level of sample size and kurtosis when population coefficient alpha underestimates 
true reliability 
 
 
 

kurtosis 
Sample size method 1.17 2.50 2.80 3.88 4.84 8.11 

ADF .94 .93 .93 .93 .90 .87 
50 

NT .95 .95 .94 .94 .87 .79 

ADF .95 .94 .94 .94 .93 .90 
100 

NT .96 .95 .94 .94 .87 .79 

ADF .95 .95 .95 .94 .95 .95 
400 

NT .96 .96 .94 .94 .87 .81 

ADF .96 .95 .95 .95 .95 .95 
1000 

NT .97 .96 .94 .94 .88 .79 

 
 
 
Note: Coverage rates should be close to nominal rates (.95). We have shaded the most 
accurate method for each combination of sample size and kurtosis. 
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Figure 1 
Histograms of the different types of items employed in the simulation study. 
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Figure 2 
Relative bias of the coefficient alpha point estimates as a function of the true population 
alpha. A quadratic model has been fit to the points to model the relationship between relative 
bias and true alpha by sample size. Bias increases with decreasing sample size and decreasing 
population alpha. 
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Figure 3 
Variability of the coefficient alpha point estimates as a function of the true population 
coefficient alpha by sample size. Linear functions have been fit to the points to model the 
relationship between the standard deviation of sample coefficient alpha and the true 
population coefficient alpha. 
 

true alpha

1.0.8.6.4.2

st
d 

of
 s

am
pl

e 
al

ph
a

.3

.3

.2

.2

.1

.1

0.0

sample size

 400

 200

 100

  50

 
 
 
: 



IE Working Paper                                    WP06/24                                05/12/2006 
 

 31 

 

Figure 4 
Percentage of times (coverage) that 95% confidence intervals for alpha include population reliability as a function of skewness. Data has been 
generated so that population alpha equals reliability. Coverage rates should be close to nominal rates (95%). The accuracy of NT CIs worsens as 
average inter-item correlation gets smaller and skewness increases. The accuracy of ADF CIs worsens as sample size decreases and skewness 
increases. The accuracy of both CIs is somewhat similar for items with low skewness (< |1|); for higher skewness, ADF CIs are more accurate 
than NT CIs provided sample size > 100 observations. 
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Figure 5 
Absolute bias of the coefficient alpha point estimates as a function of the true population 
reliability when population alpha underestimates true reliability. A linear model has been fit 
to the points to model the relationship between bias and true reliability by sample size. Bias 
increases with decreasing sample size and decreasing population reliability. The absolute bias 
of population alpha equals the estimated bias of sample alpha (to two significant digits) when 
sample size is 1000. Therefore, the points for sample size 1000 are also the absolute bias of 
population alpha. 
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Figure 6 
Scatterplot of mean standard errors (SEs) vs. standard deviation of sample coefficient alpha. The mean SEs should be equal to the standard 
deviation of sample coefficient alpha. This is indicated by the reference line in the diagonal of the graph. Points below the line indicate 
underestimation of the variability of sample coefficient alpha. NT SEs underestimate the variability of coefficient alpha when kurtosis > 4. ADF 
SEs underestimate the variability of coefficient alpha when sample size ≤ 100. Across levels of kurtosis, ADF SEs are more accurate than NT 
SEs provided sample size ≥ 100. 
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Figure 7 
Percentage of times (coverage) that 95% confidence intervals (CIs) for coefficient alpha include population coefficient alpha as a function of 
kurtosis and sample size. Data has been generated according to a congeneric model. Coverage rates should be close to nominal rates (95%). The 
accuracy of both CIs is somewhat similar (and adequate) for items with low kurtosis (< 4). For items with higher kurtosis, ADF intervals are 
more accurate, particularly when sample size > 100 observations. 
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Figure 8 
Percentage of times (coverage) that 95% confidence intervals (CIs) for coefficient alpha include population reliability as a function of kurtosis. 
Data has been generated according to a congeneric model, and population coefficient alpha is smaller than population reliability. As a result, 
coverage rates should be smaller than nominal rates (95%). The accuracy of both CIs is somewhat similar for items with low kurtosis (< 4). For 
items with higher kurtosis, ADF confidence intervals are definitively more accurate. 
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