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Abstract 
We study the effects that relative (to a benchmark) performance evaluation 
has on the provision of i ncentives for the search of private information  hen 
managers are exogenously constrained in the ir ability to se ll short and  
purchase on m argin. With these portfolio constraints we show t hat 
benchmarking the manager’s incentive fee affect her timing ability and hence 
there exist an optimal b enchmark, even without moral haz ard between t he 
investor and manager. In the presen ce of m oral hazard, numerical results 
show that the optimal incentive fee is higher than the Pareto-efficient fee and 
the optimal benchmark  is risk y but less so tha n the no mor al hazard 
benchmark 
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1 Introduction

The design of fund management compensation schemes has elicited interest amongst both prac-

titioners and researchers. The focus of the academic literature has been on how incentives a¤ect

performance and risk-taking behavior of managers. A number of theoretical papers have studied

the e¤ect of a performance-related incentive fee on managers�incentive to search for private in-

formation (see, for example, Bhattacharya and P�eiderer (1985), Stoughton (1993), Heinkel and

Stoughton (1994) and Gómez and Sharma (2006)). Another strand of literature addresses issues

related to the design of incentive fee. Adamati and P�eiderer (1997) and Dybvig, Farnsworth

and Carpenter (2001), among others, have discussed the convenience of absolute versus relative

(benchmarked to a given portfolio) incentive fees.1

With respect to risk, Roll (1992) was the �rst to illustrate the undesirable e¤ect of relative

(i.e., benchmarked) portfolio optimization in a partial equilibrium, single-period model. In par-

ticular, he shows that the active portfolio has systematically higher risk than the benchmark.

Despite this adverse risk incentive, relative performance evaluation measures such as the In-

formation Ratio have become standard in the industry. In a static framework, several papers

have studied how di¤erent constraints on the portfolio�s total risk (Roll (1992)), tracking error

(Jorion (2003)), and Value-at-Risk (VaR) (Alexander and Baptista (2006)), may help to reduce

excessive risk taking. In a dynamic setting, Basak, Shapiro, and Tepla (2006) study the optimal

policies of an agent subject to a benchmarking restriction. Basak, Pavlova and Shapiro (2006)

analyze the e¤ect of an exogenous benchmark restriction on the manager�s risk-taking behavior.

Their model shows that an exogenous benchmark restriction may ameliorate the adverse risk

incentives induced by the manager�s compensation. Brennan (1993), Cuoco and Kaniel (1993)

and Gómez and Zapatero (2003) study the asset pricing implication of relative incentive fees.

The extant literature discussed above investigates the issue of fund manager compensation

in a setting where the manager is unrestricted in her portfolio choice (for an interesting excep-

tion see Gómez and Sharma (2006)). However, in practice, fund managers face various portfolio

constraints. For example, Almazan, Brown, Carlson and Chapman (2004) document that ap-

proximately 70% of mutual funds explicitly state (in Form N-SAR submitted to the SEC) that

short-selling is not permitted. This �gure rises to above 90% when the restriction is on margin

purchases. Surprisingly, given the widespread existence of constraints, the literature has not

addressed the implication of such constraints on fund manager�s incentives.2

This paper�s contribution is to incorporate exogenous portfolio constraints into the analysis

of linear incentive fees for e¤ort inducement. This allows us to focus on how the provision of

incentives to induce manager�s e¤ort are a¤ected by the interaction between the benchmark

composition and the manager�s incentive fee. In our model, the manager�s incentives are ex-

1A further line of discussion concerns whether, if benchmarked, the incentive fee should be �convex� (i.e.
asymmetric), implying that the manager only participates in the upside and su¤ers no penalty for underperforming
the benchmark, or, as prescribed by the Securities and Exchange Commission (SEC) for mutual funds, a �fulcrum�
(symmetric) type of fee. See, for example, Das and Sundaram (2002) and Ou-Yang (2003).

2Portfolio constraints have been discussed in the literature in other contexts. For example, Almazán et al.
(2004) present evidence that portfolio constraints are devices to monitor the manager�s e¤ort. Grinblatt and
Titman (1989) and Brown et al. (1996) argue that cross-sectional di¤erences in constraint adoption might be
related to characteristics that proxy for managerial risk aversion.
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plicit: they arise from the design of the optimal compensation contract.3 We propose a simple

two-period, two-asset (the market and a risk-less bond) model. The manager is o¤ered a com-

pensation package that includes a �at fee and a performance-tied incentive fee, possibly bench-

marked to a given portfolio return. Both the incentive fee and the benchmark composition are

determined endogenously.

A number of new insights arise after introducing portfolio constraints. First, in the absence of

moral hazard between the investor and the fund manager, the optimal incentive fee coincides with

the Pareto-e¢ cient risk allocation fee. In addition, we show that benchmarking the manager�s

incentive fee a¤ects her timing ability, i.e., her ability to beat the benchmark. This new result

contrasts with the extant literature (Roll (1992) and Admati and P�eiderer (1997)) and shows

that if there exist constraints then benchmarking is optimal, even without moral hazard. We

derive explicitly the optimal benchmark�s composition as a function of the market moments, the

portfolio constraints, and the manager�s risk-aversion coe¢ cient. The benchmark is shown to

be independent of the manager�s disutility of e¤ort. In the limit, when the portfolio constraints

vanish, the well-known �irrelevance result�in Admati and P�eiderer (1997) arises: the manager�s

e¤ort is independent of the benchmark composition; it only depends on the manager�s e¤ort

disutility.

The second insight is that in presence of moral hazard and portfolio constraints, the observed

incentive fee contract under no moral hazard becomes optimal only in the limit, when the

manager risk aversion grows to in�nity. In the case of moral hazard and �nite risk aversion,

numerical results show that the optimal incentive fee is higher than in the no moral hazard case.

However, the optimal benchmark in this case is less risky than in the absence of moral hazard

although, contrary to the unconstrained case in Ou-Yang (2003), it is di¤erent from the risk-free

asset. This result is driven by the fact that, unlike in the unconstrained setting of Stoughton

(1993), under portfolio constraints a higher incentive fee does induce the manager to exert more

e¤ort. This is shown to be consistent with the results in Gómez and Sharma (2006).

To understand the model�s intuition, let�s look �rst at the manager�s e¤ort and portfolio

choice problem in isolation. Consider a manager who is totally constrained in her ability to sell

short and purchase at margin. Under moral hazard, the manager�s optimal portfolio can be

decomposed in two components: her unconditional risk-diversi�cation portfolio plus her timing

portfolio. The timing portfolio depends on the manager�s costly e¤ort to improve her timing

ability through superior information. For a uninformed manager, this portfolio would be zero.

For a hypothetical perfectly informed manager, it would push the optimal total portfolio to

either boundary: 100% in the risky asset if the market risk premium is forecasted to be positive;

100% in the bond otherwise. Now, assume that the unconditional portfolio consists of 30%

invested in the risky market portfolio. For this perfectly informed manager, any timing portfolio

that involves shorting the market by more than 30% or investing more than 70% in the market

will hit the portfolio boundaries. Anticipating this and taking into account her e¤ort disutility,

the manager will decide her optimal e¤ort expenditure.

3 In our model, the fund�s net asset value is given. We abstract from the implicit incentives arising from the
convex �ow-performance relation documented in the literature (see, for instance, Gruber (1996), Sirri and Tufano
(1998), Chevalier and Ellison (1997), Del Guercio and Tkac (2000) and Basak, Pavlova and Shapiro (2007)).
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Imagine now that the same manager is given a benchmarked contract. The benchmark

consists of 20% in the market portfolio and 80% in the bond. The manager adjusts her optimal

portfolio. Relative to the benchmark, the unconditional optimal portfolio is still 30% long in

the market. Since the manager has to beat the market, her total market investment will be

now 50% of her portfolio: 20% to replicate the benchmark plus the optimal risk-diversi�cation

30%. Holding the portfolio constraints constant, this implies that if the market premium is

predicted to be negative, the manager�s timing portfolio can now go short up to 50% in the

market, 20% more than in the absence of the benchmark. This will increase the manager�s

utility from e¤ort, thereby improving the incentives for sharpening her timing ability. At the

same time, if the market premium is predicted to be positive, the manager�s timing portfolio

can go long in the market only 50%, 20% less than before the benchmark was introduced.

This has the opposite e¤ect on the e¤ort inducement: the manager will have less incentives to

exert costly e¤ort. Taking into account this trade-o¤, the benchmark is chosen such that the

manager�s unconditional portfolio (benchmark replication plus optimal risk-return trade-o¤) is

equally distant from both portfolio boundaries. Such a benchmark would provide the manager

with the highest incentives for e¤ort exertion. The intuition is simple: such a benchmark leaves

the manager marginally indi¤erent between hitting the short-selling or the margin purchase

constraint. When the portfolio space is unconstrained, so is the timing portfolio. Benchmarking

the manager�s incentive fee does not alleviate the failure of these mechanisms to provide better

incentives for e¤ort expenditure.

The benchmark composition is decided by the investor. The model shows that, in the absence

of moral hazard between the investor and the manager, the highest-e¤ort inducement benchmark

is optimal for the investor. In the presence of moral hazard (i.e., when the manager�s e¤ort is

not observable) numerical exercises show that the investor�s optimal benchmark is less risky

than the benchmark in the public information case although di¤erent from the risk-free asset.

The model has readily testable empirical implications and, in this regard, our paper is related

to the literature on mutual fund performance evaluation. Golec (1992) and Elton, Gruber and

Blake (2003) document that the number of mutual funds that explicitly use incentive fees is

relatively small in comparison with the pervasive use of a ��at� fee (a �xed percentage of the

fund�s net asset value).4 Further, Elton, Gruber and Blake (2003) �nd that funds which use

incentive fees have superior performance relative to those that do not. In their conclusions, they

claim that �while at this time funds with incentive fees seem to o¤er superior performance relative

to other actively managed funds, we don�t know whether this is true because of the motivation

supplied by incentive fees or because skilled managers adopt incentive fees to advertise their

skills to the public.�Our model shows that under portfolio constraints, portfolio managers who

are o¤ered a benchmarked incentive fee are more motivated than equally skilled managers whose

compensation is not performance-linked.

In a related paper, Becker et al. (1999) test for market timing ability and benchmarking.

However, in their empirical model, the manager faces no portfolio constraints. According to our

4Agarwal, Daniel and Naik (2006) �nd that even for hedge funds, the call-option-like incentive fee contract
provides incentives to deliver superior performance. In particular, they �nd that funds with higher delta have
better future performance.
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results, in such a setting, there will be no role for benchmarking. Consistent with this, they �nd

no support for the use of benchmarks in an unconditional setting. However, after conditioning

for public information, they �nd an economic meaningful estimate for benchmarking, albeit the

overall performance of the model remains quite poor. The empirical implications of our model

o¤er guidance on how to extend the tests in Becker et al. (1999) into a framework that accounts

explicitly for the presence of short selling and margin purchase constraints, prevalent across the

mutual fund industry.

The rest of the paper is organized as follows. Next we introduce the model. The standard

unconstrained results are refreshed in Section 2.1. The e¤ect of portfolio constraints are analyzed

in section 2.2. In section 3, we derive the composition of the e¤ort-maximizing benchmark

portfolio. Section 4 studies the principal�s problem. A numerical solution to the constrained

manager�s e¤ort is presented in Section 5. The paper concludes with Section 6. All proofs are

presented in the Appendix. Tables and �gures are to be found after the Appendix.

2 The model

A typical fund will inform the customer that managers (who are involved in investment research)

are responsible for choosing each fund�s investments. Customers may also be informed about

how the managers are compensated. Given the information, the customer decides how much to

invest in the fund. In this paper, we shall abstract from the decision problem of the consumer.

Instead, assuming that the interests of the customer and the fund owner are the same, we shall

focus on the determination of the manager�s compensation scheme by the owner of the fund.

Slightly abusing terminology, we call the owner of the �rm - the investor.

The manager and the investor have preferences represented by exponential utility functions:

Ua(W ) = �exp(�aW ) and Ub(W ) = �exp(�bW ), respectively. Throughout the paper we

will use a > 0 (b > 0) to denote the manager (investor) as well as her (his) absolute risk

aversion coe¢ cient. The investment opportunity set consists of two assets. A risk-free asset

with gross return R and a stock with stochastic excess return x normally distributed with mean

excess return � > 0 and volatility �. These two assets can be interpreted as the usual �timing

portfolios� for the active manager: the bond and the market portfolio (or any other stochastic

timing portfolio).

The investment horizon is one period. Payo¤s are expressed in units of the economy�s only

consumption good. All consumption takes place in period-end. The manager�s compensation is

set as a percentage of the fund�s average net asset value over the period, W . The percentage

has two components: a �xed basic fee F and an incentive (performance-tied) fee. The incentive

fee is calculated as a percentage � 2 (0; 1] of the fund�s end of the period return, possibly net of
a benchmark return.5

5 In Fidelity Small, Mid and Large Cap Stock Funds, for instance, the basic fee for Small Cap Stock, Mid-Cap
Stock and Large Cap Stock for the �scal year ended April 30, 2004 was 0.73%, 0.58%, and 0.58%, respectively,
of the fund�s average net assets. The performance adjustment rate is calculated monthly by comparing the
performance of Small Cap Stock�s relative to that of the Russell 2000, Mid-Cap Stock�s performance relative to
that of the S&P MidCap 400, or Large Cap Stock�s performance relative to that of the S&P 500. The performance
period is the most recent 36-month period. The maximum annualized performance adjustment rate is �0:20% of
the fund�s average net assets over the performance period. The performance adjustment rate is divided by twelve

4
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After learning the contract, the manager decides whether to accept it or not. If rejected, the

manager gets her reservation value. If she accepts the contract, then she puts some (unobserv-

able) e¤ort e > 0 in acquiring private information (not observed by the fund�s investor) that

comes in the form of a signal

y = x+
�p
e
�;

partially correlated with the stock�s excess return. The noise term has a standard normal

distribution � � N (0; 1). For simplicity, we assume

Assumption (S1) E(x�) = 0.

The higher the e¤ort the more precise the manager�s timing information. Conditional on

the manager�s e¤ort, the stock�s excess return is normally distributed with conditional mean

return E(xjy) = �+ey
1+e and conditional precision Var�1(xjy) = 1

�2
(1 + e). Hence, e can also

be interpreted as the percentage (net) increase in precision induced by the manager�s private

information. Notice that, in case e = 0, the conditional and unconditional distributions coincide:

there is no relevant private information.

E¤ort is costly. The monetary cost of e¤ort disutility is a percentage V (D; e) of the fund�s

net asset value W . D > 0 represents a disutility parameter. The function V is increasing in D

and homogenous of degree one with respect to D. Moreover, for all e > 0, V satis�es:6

Assumption (S2) V (D; 0) = Ve(D; 0) = V (0; e) = 0;

Assumption (S3) Ve(D; e) > 0;

Assumption (S4) Vee(D;e)
Ve(D;e)

> 1
1+e .

2.1 Unconstrained Portfolio Choice

Based on the conditional moments, the manager makes her optimal portfolio decision: she will

invest a percentage �(y) in the stock and the remaining 1��(y) in the risk-free bond. Therefore,
the portfolio�s return will be Rp = R + �x. De�ne the benchmark�s return as Rh = R + hx

with h as the benchmark�s policy weight : the proportion in the benchmark portfolio invested

in the risky stock. The portfolio�s net return is given by Rp � Rh = ��x with �� = � � h, the
net (over the benchmark) investment in the risky stock. If h = 0, the benchmarked return is

Rp � Rh = �x, the excess return. Since the risk-free return is a constant, from the point of

view of the manager, this case is equivalent to no benchmarking. Given a contract (F; �; h), the

conditional end-of-the-period wealth is given as a percentage 'a, for the manager, and 'b, for

the investor, of the fund�s net asset value, W :

'a(
��) = F + ���x; (1)

'b(
��) = (1� �)��x� F; (2)

and multiplied by the fund�s average net assets over the performance period, and the resulting dollar amount is
then added to or subtracted from the basic fee. For alternative fee structures in the mutual fund industry, see
Elton, Gruber and Blake (2003).

6The subscripts e and ee denote, respectively, �rst and second derivative with respect to e¤ort.
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with �� = ��(y) and x = x(y), functions of the signal realization y. After these de�nitions, the

conditional utility function for the manager and the investor can be expressed, respectively, as7

Ua
�
'a(
��)
�
= �exp

�
�a'a(��)W + V (D; e)W

�
;

Ub
�
'b(
��)
�
= �exp

�
�b'b(��)W

�
:

In this setting, the Arrow-Pratt risk premium for the manager and the investor will be,

�W a�W
2
��
2
�2 and (1 � �)W b(1��)W

2
��
2
�2, respectively. Thus, a�W (b(1 � �)W ) represents

the manager�s (investor�s) relative risk aversion coe¢ cient. For simplicity, and without loss

of generality, we normalize W = 1.

We shall proceed backwards. First, we will obtain the optimal portfolio choice �. Then, after

recovering the manager�s indirect utility function, we will tackle the manager�s e¤ort decision.

The unconstrained manager�s optimal net portfolio solves

��(y) = argmax
��

�
E('a(

��))� (a=2)Var('a(��))
	
;

which yields the optimal portfolio

�(y) = h+
�

a��2
+

ey

a��2
: (3)

The manager�s optimal portfolio has three components: the benchmark�s investment in the

risky stock, h; the unconditional optimal risk-return trade-o¤, �
a��2

and, depending on the

manager�s signal y and her e¤ort expenditure, e, the timing portfolio, ey
a��2

.

Replacing �(y) in the manager�s expected utility function and integrating over the signal y

we obtain the manager�s (unconditional) expected utility:

EU('a(e)) = �exp (�(1=2)(�2=�2)� aF + V (D; e))
�

1

1 + e

�1=2
: (4)

At the optimum, the e¤ort marginal utility must be equal (�rst-order condition) to its marginal

disutility:

Ve(D; eSB ) =
1

2(1 + eSB )
: (5)

We call this solution the second best e¤ort.8 Assumptions (S2) and (S3) guarantee that the

necessary condition (5) is also su¢ cient for optimality. Clearly, the manager�s second best

e¤ort choice (hence the quality of her private information) is independent of the benchmark�s

composition, h. This is the same result as in Admati and P�eiderer (1997). E¤ort only depends

on the manager�s disutility coe¢ cient, D.

7Notice that, since V is homogenous of degree one with respect to D, we can always write aV (D0; e) = V (D; e)
with D = aD0. Hence the parameter D is a (increasing) function of the manager�s risk aversion among other
factors.

8The �rst best e¤ort is the e¤ort the unconstrained manager would exert under no asymmetric information,
that is, in the absence of moral hazard.
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2.2 Constrained Portfolio Choice

We now introduce the main theoretical contribution of the paper. Assume that the manager

is constrained in her portfolio choice in that she cannot short-sell or purchase on margin. Let

m � 1 denote the maximum trade on margin the manager is allowed: m = 1 means that the

manager is not allowed to purchase the risky stock on margin; for any m > 1 the manager can

borrow and invest in the risky stock up to m � 1 dollars per dollar of the fund�s current net
asset value. Let s � 0 denote the short-selling limit: s = 0 means that the manager cannot

sell short the risky stock; for any s > 0 the manager can short up to s dollars per dollar of the

fund�s current net asset value. According to the SEC regulation, the maximum initial margin

for leveraged positions is 50%, which implies that m � 2 and s � 1.9 In terms of the manager�s
portfolio choice problem, this implies m � � � �s or, equivalently, m� h � �� � �(h+ s).

The manager then solves the following constrained problem

��(y) = arg max
m�h�����(h+s)

�
E('a(

��))� (a=2)Var('a(��))
	
:

Call �m � 0 and �s � 0 the corresponding Lagrange multipliers, such that �m(m � h � ��) =
�s(��+h+ s) = 0. There are three solutions. If neither constraint is binding, �m = �s = 0, then

the interior solution follows: ��(y) = �+ey
a��2

. Alternatively, there are two possible corner solutions:

�rst, if the short-selling limit is binding, �m = 0 and �s = E(xjy) + a�(h+ s)Var(xjy) < 0. In
such a case, �� = �(h + s). In the second corner solution, the margin purchase bound is hit:
�s = 0 and �m = �E(xjy) + a�(m� h)Var(xjy) < 0. In such a case, �� = m� h.

Solving for the optimal portfolio �(y) as a function of the signal realization we obtain that,

in the case of no timing ability (e = 0), � = h + �
a��2

provided �
�
s+ �

a��2

�
� h � m � �

a��2
.

For the case when e > 0 we obtain:

�(y) =

8>>>>>><>>>>>>:

�s if y < ��
eLs

h+ �
a��2

+ ey
a��2

otherwise

m if y > �
eLm:

(6)

We call

Ls(h) = 1 + (h+ s)
� �

a��2

��1
Lm(h) = (m� h)

� �

a��2

��1
� 1

the leverage ratios. These ratios represent the net (relative to the benchmark) maximum leverage

from selling short (h+ s) or trading at margin (m�h) as a proportion of the manager�s optimal
unconstrained portfolio when e = 0 and h = 0.

Looking at the way the leverage ratios change with benchmarking, we observe that @
@hLs =� �

a��2

��1
> 0 and @

@hLm = �
� �
a��2

��1
< 0. That is, Ls (Lm) increases (decreases) with h.

9Of course, investors can e¤ectively leverage their portfolios above those limits by investing in derivatives.
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Moreover, given the (risk-adjusted) market premium �=�2, the marginal change in Ls (Lm)

increases (decreases) with the manager�s relative risk aversion a�.

Equation (6) shows how the constraints and benchmarking interact to provide incentives for

e¤ort expenditure. To see the intuition, let us focus �rst on the short-selling constraint. Let us

assume for the moment that there exist no limit to margin purchases (m ! 1) and that no
short position can be taken (s = 0). Under these assumptions, and after putting some e¤ort e,

the manager receives a signal y and makes her optimal portfolio choice:

�(y) =

8><>:
0 if y < ��

eLs

h+ �+ey
a��2

otherwise;

with Ls = 1 + h
� �
a��2

��1. When h = 0, all signals y < ��
e lead to short-selling. Imagine now

that the manager is o¤ered a benchmarked contract, with h > 0 the benchmark�s proportion

invested in the risky stock. In this case, the short-selling bound is only hit for smaller signals

y < ��
eLs. In general, increasing h leads to a �wider range�of implementable signals relative

to the case of no benchmarking (h = 0). Since the e¤ort decision is taken prior to the signal

realization, the fact that more signals are implementable under benchmarking (h > 0) increases

the marginal expected utility of e¤ort. The size of this incremental area grows with ha�. Hence,

we expect the impact of benchmarking to be relatively higher for more risk averse investors.

Alternatively, assume there is no benchmarking (h = 0) but the short-selling limit is ex-

panded from s = 0 to s = h. Figure 1 shows that, ceteris paribus, the e¤ort choice of the

manager will coincide with the e¤ort put under benchmarking: given that s = 0, benchmarking

the manager�s portfolio return (h > 0) is, in terms of e¤ort inducement, equivalent to relaxing

the short-selling bound from 0 to h. In other words, in the absence of margin purchase con-

straints, the manager�s e¤ort depends on s+ h; benchmarking the manager�s performance and

relaxing her short-selling constraints are perfect substitutes for e¤ort inducement. The higher s

the lower the marginal expected utility of e¤ort induced by benchmarking. In the limit, when

the short-selling bounds vanish (s!1), we converge to the unconstrained scenario in Section
2.1 where benchmarking was shown to be irrelevant for the manager�s e¤ort decision.

Let us focus now on the margin purchase constraint. Assume s ! 1 and m = 1. This

implies that the manager can short any amount but cannot trade on margin: for �very good�

signals the manager can only invest up to 100% of the fund�s net asset value in the risky stock.

Her optimal portfolio (as a function of the signal) will be:

�(y) =

8><>:
1 if y > �

eLm,

h+ �+ey
a��2

otherwise,

with Lm = (1 � h)
� �
a��2

��1 � 1. Lm is decreasing in h. Decreasing h in the manager�s com-

pensation just makes the portfolio constraint �less binding,�i.e., binding for bigger signals. For

instance, moving from a benchmarked contract (h > 0) to a non benchmarked contract (h = 0)

would increase the manager�s e¤ort: signals that were not implementable under benchmark-

8
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ing become now feasible. Symmetrically to the short-selling constraint, the expected impact

on e¤ort expenditure would be analogous if benchmarking were not removed (h > 0) and the

constraint on margin purchases made looser: from m = 1 to m = 1 + h. Therefore, in the

absence of short selling constraints, the manager�s e¤ort depends on m� h: benchmarking the
manager and tightening the margin purchase constraint are perfect substitutes for the manager�s

e¤ort (dis)incentive. Again, the impact of benchmarking increases, in absolute terms, with the

manager�s relative risk aversion, a�. In the limit, when the manager faces no margin purchase

constraint (m!1) the benchmark composition is irrelevant for the manager�s e¤ort decision.
In summary, by modifying the benchmark portfolio composition we observe two opposing

e¤ects: for the short selling constrained manager, increasing the benchmark�s percentage invested

in the risky stock (h) induces the manager to put more e¤ort. On the other side, for the manager

constrained in her ability to purchases at margin, increasing that percentage lowers the e¤ort

incentives. Thus, when (as for most mutual fund managers) both short selling and margin

purchase are constrained, the trade-o¤ between these two e¤ects yields the optimal benchmark

composition. This is the question we investigate in the next section.

3 The optimal benchmark portfolio composition

To address this question, we proceed as follows. Proposition 1 introduces the manager�s uncon-

ditional expected utility under short selling (0 � s < 1) and margin purchase (1 � m < 1)
constraints for all possible values of h in the real line. In Proposition 2 we show that Assumptions

(S2)-(S4) are su¢ cient for the existence of a continuous and di¤erentiable e¤ort function, e(h),

that yields a unique e¤ort choice for each value of h. The function attains a global maximum

at h� = m�s
2 � �

a��2
:

Before introducing the constrained manager�s unconditional expected utility we need some

notation. Let �(�) denote the cumulative probability function of a Chi-square variable with one
degree of freedom: �(x) =

R x
0 �(z) dz; with

�(z) =

(
1p
2�
z�1=2 exp(�z=2) when z > 0;

0 otherwise.

Proposition 1 Given the �nite portfolio constraints s � 0 and m � 1, the risk-averse man-

ager�s expected utility is EUa ('a(e)) = �(1=2)exp(�(1=2)�2=�2� aF +V (D; e)) � g(e; Ls; Lm)
with g(e; Ls; Lm) =

exp
�
(��Ls)

2

2

�h
1 + �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1� �

�
1+e
e

��
�Lm

�2�i
(7)
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if h < �
�
s+ �

a��2

�
;

exp
�
(��Ls)

2

2

�h
1� �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Ls)

2

e

�
+�

�
(��Lm)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1� �

�
1+e
e

��
�Lm

�2�i
(8)

if �
�
s+ �

a��2

�
� h � m� �

a��2
;

exp
�
(��Ls)

2

2

�h
1� �

�
1+e
e

��
�Ls

�2�i
+

�
1
1+e

�1=2 �
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
+

exp
�
(��Lm)

2

2

�h
1 + �

�
1+e
e

��
�Lm

�2�i
(9)

if h > m� �
a��2

:

Equations (7), (8) and (9) are weighted sums of the manager�s unconstrained expected utility

(4), independent of h, and her expected utility function when the portfolio hits either the short-

selling constraint bound, exp
�
(��Ls)

2

2

�
, or the margin purchase bound, exp

�
(��Lm)

2

2

�
. When

the manager is constrained, the benchmark�s composition (i.e., the value of the parameter h)

a¤ects the quality of the timing signal through the e¤ort choice.

Corollary 1 The �rst derivative ge(e; Ls; Lm) = �1
2

�
1
1+e

�3=2
��

�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
if h < �

�
s+ �

a��2

�
�
�

�
(��Ls)

2

e

�
+�

�
(��Lm)

2

e

��
if �

�
s+ �

a��2

�
� h � m� �

a��2

�
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
if h > m� �

a��2
;

is decreasing with respect to e.

Notice that functions g(e; Ls; Lm) and ge(e; Ls; Lm) are symmetric with respect to h around

h� = m�s
2 � �

a��2
, the center of the interval [�(s+ �

a��2
);m� �

a��2
]. To see this, let � represent

the deviation in the benchmark portfolio�s percentage invested in the risky asset above (� > 0)

or below (� < 0) the reference value h�. It can be shown that Ls(h� + �) = Lm(h� � �) for all
� 2 <. Replacing the later equality in the functions g and ge the symmetry is proved.

10
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We call eTB the third best e¤ort that maximizes the constrained manager�s expected utility

function in Proposition 1:

eTB = argmaxe�(1=2)exp(�(1=2)�2=�2 � aF + V (D; e)) � g(e; Ls; Lm): (10)

From the previous equation, it is obvious that, unlike in the unconstrained scenario, the

manager�s optimal e¤ort depends on h (through Ls and Lm). We want to study how the third

best e¤ort changes with h, more concretely, whether there exists an optimal (e¤ort maximizing)

benchmark.

The following proposition presents general conditions on the e¤ort disutility function and

the range of the benchmark parameter h for which there exists a well behaved e¤ort function,

that is, a function that yields, for each benchmark portfolio h, the utility maximizing third best

e¤ort (10). More importantly, the same conditions are shown to be su¢ cient for the existence

of a benchmark portfolio h� that elicits the highest e¤ort from the manager. The value of h�

is explicitly derived as a function of the manager�s portfolio constraints on short selling, s, and

margin purchase, m; her relative risk aversion, a�; and the market portfolio moments, � and

�2.

Proposition 2 Assume (S2)-(S4) hold. For all h 2 [�(s+ �
a��2

);m� �
a��2

] there exists a unique

function e(h), continuous and di¤erentiable, such that e(h) = eTB . Let h
� = m�s

2 � �
a��2

. Then,

e(h�) > e(h) for all h 6= h� 2 [�(s+ �
a��2

);m� �
a��2

]:

Corollary 2 Assume (S2)-(S4) hold. Provided it exists, the e¤ort function e(h) is increasing
in h for all h < �(s + �

a��2
) and decreasing in h for all h > m � �

a��2
. Moreover, the e¤ort

function is symmetric in h around h�, i.e., e(h� + �) = e(h� � �) for all � 2 <.

From proposition 2 and corollary 2, it is clear that the manager�s e¤ort function attains

a global maximum at h� = m�s
2 � �

a��2
. The intuition for this result is as follows: on the

one hand, increasing benchmarking (i.e., higher h) lowers the likelihood of hitting the short

selling constraint; on the other hand, it increases the probability of hitting the margin purchase

constraint. The e¤ect of decreasing benchmarking (i.e. lower h) is just symmetric. The trade-o¤

of these two opposite e¤ects yields the e¤ort-maximizing value of the benchmark composition, h�.

In other words, the benchmark portfolio h� makes the manager, in expected terms, indi¤erent

between hitting either constraint (short selling and margin purchase).

Intuitively, the e¤ort choice for the constrained manager is smaller than for the unconstrained

manager. In the next corollary we formalize this intuition.

Corollary 3 For any given contract (F; �; h) and �nite manager�s risk aversion, a, the con-
strained manager�s third best e¤ort eTB < eSB . Only in the limit, when the manager�s risk

aversion tends to in�nity, it is optimal for the constrained manager to exert the unconstrained,

second best e¤ort.

We conclude this section by studying to especial cases of the more general constrained prob-

lem. As illustrated in the examples in section 2.2, when the manager is only short selling con-

strained (i.e., unlimited margin purchases), increasing the benchmark investment in the risky
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asset, h, gives the manager more incentives to put higher e¤ort. In the case of unlimited short

selling and constrained margin purchases, the result is symmetric: e¤ort decreases with h. In

either case, there is no optimal benchmark composition. The following corollary summarizes

these �ndings.

Corollary 4 When the manager can purchase at margin with no limit but faces a short selling
bound, the e¤ort function is monotonous increasing in h. Symmetrically, when the manager can

sell short with no restriction but faces limited margin purchase, the e¤ort function is monotonous

decreasing with h.

4 The principal�s problem

The investor�s optimal contract (F; �; h) maximizes his expected utility subject to the man-

ager�s incentive compatibility and participation constraints. For simplicity, and without loss of

generality, we normalize the manager�s reservation value to �exp(�(1=2)�2=�2). For a given
contract (F; �; h), the manager�s (conditional) wealth is given as a percentage, equation (2), of

the fund�s net asset value. Gómez and Sharma (2006) have shown that when the manager is

unconstrained, the second best incentive fee is equal to the �rst best incentive fee, �SB = �FB .

The manager�s e¤ort solves condition (5), independent of � and h. Hence, absent any portfolio

constraint, the model bears no prediction about the benchmark parameter h.

The constrained manager, after accepting the contract, puts the third best e¤ort eTB in (10).

Then, she receives the signal y and invest a proportion �(y) as in (6) in the risky asset.

Call t(�) = b(1��)
a� the ratio of the investor�s vis-�a-vis the manager�s relative risk aversion.

Let T (�) = (2� t(�))t(�). In what follows we constrain our analysis to the case �
�
s+ �

a��2

�
�

h � m� �
a��2

. The investor�s expected utility is introduced in the following proposition.

Proposition 3 Assume �
�
s+ �

a��2

�
� h � m� �

a��2
. Given the portfolio constraints s � 0 and

m � 1, the expected utility of the risk-averse investor is EUb('b(e)) = �exp(bF � (1=2)�2=�2)�
f(e; Ls; Lm) with f(e; Ls; Lm) =

exp
�
(�� (1+t(�)(Ls�1)))

2

2

��
1� �

�
1+e
e

�
�
� (1 +

1+t(�)e
1+e (Ls � 1))

�2��
+

exp
�
�(

�
� )

2
(T (�)�1)

2(1+T (�)e)

��
1

1+T (�)e

�1=2 �
�

�
1+e

e(1+T (�)e)

�
�
� (1 +

1+T (�)e
1+e (Ls � 1))

�2�
+

�

�
1+e

e(1+T (�)e)

�
�
� (
1+T (�)e
1+e (1 + Lm)� 1)

�2��
+

exp
�
(�� (t(�)(1+Lm)�1))

2

2

��
1� �

�
1+e
e

�
�
� (
1+t(�)e
1+e (1 + Lm)� 1)

�2��
:

(11)

The investor must chose the optimal linear contract, which includes the optimal �xed and

incentive fees, � and h, respectively, and the optimal benchmark, h. We want to study how the
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portfolio constraints and the presence of moral hazard a¤ect the investor�s choice.

Assume �rst that the manager�s e¤ort decision is observable. In this case the investor

maximizes his expected utility with respect to �, h and e¤ort subject to the participation

constraint �(1=2)exp(�(1=2)�2=�2�aF+V (a; e))�g(e; Ls; Lm) � �exp(�(1=2)�2=�2): Clearly,
neither e¤ort nor h are a function of F . This, along with the fact that the left-hand side is

increasing in F and the investor�s utility is decreasing in F , implies that under the optimal

contract the participation constraint is binding. So, the investor�s problem is reduced to �nding

the optimal split, benchmark, and e¤ort that maximizes

EUb('b(e)) = �exp(�(1=2)�2=�2 + (b=a)V (D; e))� g(e; Ls; Lm)b=af(e; Ls; Lm): (12)

On the other hand, when the manager�s e¤ort decision is not observable by the investor,

the third best problem consists in �nding the optimal split �TB that maximizes (12) subject to

the manager�s optimal e¤ort condition (10). Note that, due to �rst order condition (A1) in the

Appendix, (10) is uniquely solvable in terms of � and h.

Despite this simpli�cation, it is di¢ cult to �nd a closed form solution for the optimal linear

contract. Yet, we can still show that under bounded leverage and in the absence of moral hazard:

(i) for h = h�, the unconstrained, �rst best risk-share �FB = b
a+b is (�rst-order condition)

optimal, consistent with the result in Gómez and Sharma (2006); (ii) for � = �FB , the benchmark

parameter h� in Proposition 2 is optimal.

In the presence of moral hazard, the optimal linear contract is, in general, di¤erent from

(�FB ; h
�). The Appendix shows that, for � = �FB , h

� satis�es the �rst-order optimality con-

dition. However, the marginal utility of the third best e¤ort at �FB is positive. This is to be

expected because under portfolio constraints � plays an additional role over risk-sharing. As

in most moral hazard problems, e¢ ciency in risk allocation has to be traded o¤ against e¤ort

inducement. In the limit, when the manager�s absolute risk aversion a!1, �FB ! 0 and the

contract (�FB ; h
�) becomes optimal.

Proposition 4 When the e¤ort decision is public information, the contract (�FB ; h
�) is optimal

under portfolio constraints.

When the e¤ort decision is not observable by the investor, the contract (�FB ; h
�) is, in

general, suboptimal. In the limit, when the manager�s absolute risk aversion a!1, the contract
(�FB ; h

�) becomes optimal.

The model, therefore, predicts that for a su¢ ciently risk averse manager, the optimal con-

tract will have a very low incentive fee (�FB ! 0 when a ! 1) and it will be benchmarked:
h� ! m�s

2 � �
b�2

when � = �FB and a ! 1. This �nding is consistent with the contracts
typically observed among mutual fund managers (arguably, more risk averse and certainly con-

strained): low incentive fee and relative (i.e., benchmarked) performance evaluation. In contrast,

unrestricted hedge fund managers are usually o¤ered high incentive fees and their performance

is measured in absolute (i.e., non-benchmarked) terms.
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5 A numerical solution of the third best contract

Due to the complexity of the manager�s expected utility function in Proposition 1, we cannot

solve analytically for the optimal third best contract. We can, however, solve the problem

numerically. We propose the function V (e) = D
2 e

2 with disutility parameter D = 1.

Throughout the numerical analysis, we take the market excess return � = 6% and the market

volatility � = 18%, both on an annual basis. The principal�s absolute risk aversion is b =

10. The manager�s absolute risk aversion parameter takes values a 2 f10; 20; 30; 40; 100; 1000g.
The manager is constrained as follows: s = 0 and m = 1. For each combination (a; b) we

calculate the investor�s expected utility for a grid of values for alpha and h around the contract

(�FB(a; b); h
�(a; b)). The grid size is 13 � 13. Precisely, � changes from 70% � �FB(a; b) to

130%� �FB(a; b), at intervals of length 5%�FB(a; b). Likewise, h changes from 70%h�(a; b) to

130%� h�(a; b), at intervals of length 5%h�(a; b).
We calculate the investor�s expected utility in two cases: �rst in the absence of moral hazard

(the manager�s e¤ort decision is publicly observable); second under moral hazard, i.e., the third

best scenario. Figures 2 and 3 present the results graphically.

The left column presents the public information case. For each contract (�; h) the investor

solves for the manager�s e¤ort level that maximizes (12). Notice that, for al values of a, the

optimal contract (highest expected utility) is, as predicted by Proposition 4, (�FB; h�), right

at the center of the grid. Obviously, by de�nition, holding b = 10 constant, �FB (h�)decreases

(increases) with a.

The right column presents the third best scenario. For each contract (�; h) the manager

chooses her optimal third best e¤ort in (10). For all values of a the optimal contract under

moral hazard is located North-East relative to the optimal, public information benchmark (left

column). We observe that the optimal � > �FB and the optimal benchmark h � h�. This con-
�rms the prediction in Proposition 4: under moral hazard, the contract (�FB; h�) is suboptimal.

Notice that as a increases, the third best contract converges to the public information optimal

contract (�FB; h�), just as predicted by Proposition 4.

Figure 4 presents the induced third best e¤ort under portfolio constraints for three values

of the manager�s risk aversion: a = f10; 40; 100g. The second best e¤ort eSB = 0:366 is also

reported for comparison purposes. Notice that, in agreement with Proposition 2, for every given

� the third best e¤ort is symmetric around h�. Moreover, consistent with Gómez and Sharma

(2006), for every benchmark portfolio h the third best e¤ort increases monotonously with �.

As the manager�s risk aversion increases, the induced third best e¤ort converges towards the

unconstrained second best e¤ort.

6 Conclusions

This paper investigates the e¤ort inducement incentives of (potentially benchmarked) linear

incentive fee contracts. Incentives arise explicitly via the compensation of the manager. The

investor has to decide simultaneously the incentive fee (the manager�s participation in the dele-

gated portfolio�s return) and the benchmark composition.
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The contribution of our paper to the literature on management compensation comes from

the fact that we incorporate portfolio constraints in our model. These constraints are exogenous

in our model and could be motivated by regulation or, as suggested by Almazan et al (2004), as

alternative monitoring mechanism in a broader equilibrium model.

Under portfolio constraints and moral hazard, our model predicts that portfolio manager�s

should be o¤ered an incentive fee benchmarked against a portfolio that combines the risky

market portfolio and the risky asset. Numerical exercises suggest that, in contrast with the pre-

dictions from the unconstrained setting in Ou-Yang (2003), the risk-free asset is not the optimal

benchmark. When portfolio constraints are removed, the model predicts that the manager�s

e¤ort is unrelated to the incentive fee and the benchmark composition, a well-known result in

the literature.

These predictions are consistent with the prevalence of absolute return (non-benchmarked)

compensation schemes among hedge fund managers, arguably much less constrained than mutual

fund managers. Moreover, it o¤ers a theoretical foundation for the observed out-performance of

mutual funds who o¤er incentive fee compensation as documented by Elton, Gruber and Blake

(2003). Novel empirical implications of our model will be the object of further research in the

future.
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Appendix

Proof of Proposition 1

Replacing (6) in the manager�s utility function:

EU ('a(y)) = �exp(�aF + V (D; e)) �8>>>>>><>>>>>>:

exp
�
(h+ s)a�E(xjy) + (1=2)((h+ s)a�)2Var(xjy)

�
if y < ��

e (Ls)

exp
�
�(1=2)E2(xjy)=Var(xjy)

�
otherwise

exp
�
�(m� h)a�E(xjy) + (1=2)((m� h)a�)2Var(xjy)

�
if y >�

e (Lm) :

Multiplying the previous expression by the density function of the signal variable, y, we

obtain:

�exp(�(1=2)(�2=�2)� aF + V (D; e))
�

e

1 + e

�1=2 1p
2��

�8>>>>>>>>>><>>>>>>>>>>:

exp
�
(��Ls)

2

2

�
exp

�
�(1=2) e

1+e

� y
� �

�
�Ls

�2� if y < ��
e (Ls)

exp
�
�(1=2)e

� y
�

�2� otherwise

exp
�
(��Lm)

2

2

�
exp

�
�(1=2) e

1+e

� y
� +

�
�Lm

�2� if y >�
e (Lm) :

Replace k = e
1+e

� y
� �

�
�Ls

�2 if y < ��
e (Ls); k =

e
1+e

� y
� +

�
�Lm

�2 if y > �
e (Lm), and

k = e
� y
�

�2 otherwise. Integrating over k and given the de�nition of �(�), the unconditional
utility function follows. QED

Proof of Corollary 1

By de�nition, jLmj > jLsj for all�1 < h < �
�
s+ �

a��2

�
such that

�
�

�
(��Lm)

2

e

�
� �

�
(��Ls)

2

e

��
>

0; likewise jLsj > jLmj for all 1 > h > m� �
a��2

such that
�
�

�
(��Ls)

2

e

�
� �

�
(��Lm)

2

e

��
> 0.

QED

Proof of Proposition 2

Let us de�ne J (e; Ls; Lm) = Ve(D; e)� g(e; Ls; Lm)+ ge(e; Ls; Lm): The function J 2 C1 for all
(e; h). The third best e¤ort in (10) satis�es:
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J (eTB ; Ls; Lm) = 0; (A1)

Je(eTB ; Ls; Lm) > 0: (A2)

The implicit function theorem allows us to solve �locally�the equation; that is, for all (ê; ĥ)

that satisfy (A1) and (A2), e¤ort e can be expressed as a function of h in a neighborhood of

(ê; ĥ).

More formally: for all (ê; ĥ) that satisfy (A1) and (A2) there exists a function e(h) 2 C1 and
an open ball B(ĥ), such that e(ĥ) = eTB and J (e(h); Ls; Lm) = 0 for all h 2 B(ĥ).

Taking the derivative of J (eTB ; Ls; Lm) with respect to h:10

eh(h) = �Jh(eTB ; Ls; Lm)� J �1e (eTB ; Ls; Lm):

Taking the second derivative of (8) with respect to e:

gee(e; Ls; Lm) =
1

2

�
1

1 + e

�3=2(3
2

�
1

1 + e

�"
�

 ��
�Ls

�2
e

!
+�

 ��
�Lm

�2
e

!#
+

1

e2

"
�

 ��
�Ls

�2
e

!
�
��
�
Ls

�2
+ �

 ��
�Lm

�2
e

!
�
��
�
Lm

�2#)
> 0:

Condition (A2) can be written as Vee(D; e) > �ge
g (e; Ls)�Ve(D; e)�

gee
g (e; Ls): �

ge
g (e; Ls) <

1
2(1+e) and

gee
g (e; Ls) � 0. Then, (S4) implies (A2) for all h 2 [�

�
s+ �

a��2

�
;m� �

a��2
].

The sign of eh(h), therefore, depends on the sign of Jh(e; Ls; Lm) = Ve(D; e)�gh(e; Ls; Lm)+
geh(e; Ls; Lm).

From (S3), Ve(D; e) > 0. From Corollary 1,

geh(e; Ls; Lm) = �
�

1

1 + e

�3=2
e�1=2

a��p
2�

�
exp
�
(��

�
Ls)

2

2e

�
� exp

�
(��

�
Lm)

2

2e

��
(A3)

for all h 2 <.
Let us de�ne the gamma function �(u) =

R1
0 tu�1exp(�t)dt for u > 0. The incomplete

gamma function is given by �(u; v) =
R1
v tu�1exp(�t)dt for v > 0. From (8),

gh(e; Ls; Lm) =

a�p
�
�

�
1

2
;
1 + e

e

��
Lsexp

�
(��Ls)

2

2

�
� Lmexp

�
(��Lm)

2

2

��
� (A4)�

e

1 + e

�1=2 2a��p
2�

�
exp
�
(��

�
Ls)

2

2e

�
� exp

�
(��

�
Lm)

2

2e

��
:

10The subscript h denotes �rst derivative with respect to h. The subscript eh denotes cross derivative with
respect to e and h.
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By de�nition, Ls(h� + �) = Lm(h
� � �), for all � 2 <. For all 0 < � < m+s

2 , Ls(h� � �) <
Lm(h

���) and Ls(h�+�) > Lm(h�+�). Let L�s = Ls(h�) and L�m = Lm(h�). For � = 0, L�s = L�m.
Therefore, eh(h) > 0 for all �

�
s+ �

a��2

�
� h < h� and eh(h) < 0 for all h� < h � m � �

a��2
;

eh(h
�) = 0. Since the function e(h) is continuous and di¤erentiable, it follows that h� is a local

maximum in the interval
�
�
�
s+ �

a��2

�
;m� �

a��2

�
. Q.E.D.

Proof of Corollary 2

Let h < �
�
s+ �

a��2

�
. Then, Ls < 0 and Lm > 0 and jLsj < jLmj. From (7),

gh(e; Ls; Lm) =

a��Lsexp

 ��
�Ls

�2
2

!�
1 + �

�
1 + e

e

��
�
Ls

�2��
�

a��Lmexp

 ��
�Lm

�2
2

!�
1� �

�
1 + e

e

��
�
Lm

�2��
� (A5)

�
e

1 + e

�1=2 2a��p
2�

�
exp
�
(��

�
Ls)

2

2e

�
� exp

�
(��

�
Lm)

2

2e

��
< 0

From (A3), geh(e; Ls; Lm) < 0. Given (S3), it follows that eh(h) > 0 for all h < �
�
s+ �

a��2

�
.

Let h > m� �
a��2

. Then, Ls > 0 and Lm < 0 and jLsj > jLmj. From (9),

gh(e; Ls; Lm) =

a��Lsexp

 ��
�Ls

�2
2

!�
1� �

�
1 + e

e

��
�
Ls

�2��
�

a��Lmexp

 ��
�Lm

�2
2

!�
1 + �

�
1 + e

e

��
�
Lm

�2��
�

�
e

1 + e

�1=2 2a��p
2�

�
exp
�
(��

�
Ls)

2

2e

�
� exp

�
(��

�
Lm)

2

2e

��
> 0:

From (A3), geh(eTB ; Ls; Lm) > 0. Given (S3), it follows that eh(h) < 0 for all h > m�
�

a��2
.

Q.E.D.

20

IE WORKING PAPER                         DF8-125-I                         19/03/2007



Proof of Corollary 3

Let h 2
�
�
�
s+ �

a��2

�
;m� �

a��2

�
. We re-write the function J (e; Ls; Lm) as:

J (e; Ls; Lm) =
�
Ve(D; e)�

1

2(1 + e)

��
1

1 + e

�1=2 "
�

 ��
� (Ls)

�2
e

!
+�

 ��
� (Lm)

�2
e

!#

+Ve(D; e)

(
exp

 ��
� (Ls)

�2
2

!
�
"
1� �

 ��
� (Ls)

�2
e

(1 + e)

!#

+exp

 ��
� (Lm)

�2
2

!
�
"
1� �

 ��
� (Lm)

�2
e

(1 + e)

!#)
:

Evaluating this function at the second best e¤ort and given (5) we obtain

J (eSB ; Ls; Lm) =

Ve(D; eSB )

(
exp

 ��
� (Ls)

�2
2

!
�
"
1� �

 ��
� (Ls)

�2
eSB

(1 + eSB )

!#
(A6)

+exp

 ��
� (Lm)

�2
2

!
�
"
1� �

 ��
� (Lm)

�2
eSB

(1 + eSB )

!#)
> 0:

This implies that EeUa('a(eSB )) = �exp(�(1=2)�2=�2�aF+V (D; eSB ))�J (eSB ; Ls; Lm) <
0:

Therefore, for the constrained manager, the marginal utility of e¤ort at eSB is negative. Since

eTB is unique and the function is continuous in e, given conditions (A1) and (A2), it follows

that eSB > eTB for all h 2
�
�
�
s+ �

a��2

�
;m� �

a��2

�
. Given Corollary 2 this result holds for all

h 2 <. Next we show that

lim
z!1

�
exp (z=2)�

�
1� �

�
z
1 + e

e

���
= 0: (A7)

Re-writing (A7) and applying L�Hôpital�s rule we get:

lim
z!1

1� �
�
z 1+ee

�
exp (�z=2) = lim

z!1
exp(�z=e)

z
= 0:

Therefore, given (A6) and (A7), J (eSB ; Ls; Lm) tends to zero when a tends to in�nity. In
the limit, the constrained manager�s marginal expected utility of e¤ort becomes zero at eSB ,

EeUa('a(eSB )) = 0. Q.E.D.

Proof of Corollary 4

Lemma 1 For all 0 < x <1, 12 (1� �(x))� �(x) < 0.

Proof: See Lemma 1 in Gómez and Sharma (2006)
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Let m ! 1 and 0 � s < 1. We call gh(e; Ls) = limm!1 gh(e; Ls; Lm) and geh(e; Ls) =

limm!1 geh(e; Ls; Lm). From (A5), gh(e; Ls) < 0 for h < �
�
s+ �

a��2

�
. For h > �

�
s+ �

a��2

�
,

gh(e; Ls) = 2a�Ls � exp
�
(��Ls)

2

2

�n
1
2

h
1� �

�
1+e
e

��
�Ls

�2�i
��
�
1+e
e

��
�Ls

�2�o
< 0; given Lemma 1.

Therefore, gh(e; Ls) < 0 for all h 2 <. From (A3), geh(e; Ls) < 0 for all h 2 <. Thus,
eh(h) > 0 for all h 2 <. Following the same procedure, it is trivial to show that eh(h) < 0 for
all h 2 < when s!1 and 1 � m <1. Q.E.D.

Proof of Proposition 4

First, we prove the results under the assumption of public information.

Lemma 2 For any e¤ort e > 0,

@

@h
EUb('b(e)j�FB ; h)

����
h=h�

=
@

@�
EUb('b(e)j�; h�)

����
�=�

FB

= 0:

Proof: It is immediate to see that L�s = L�m = m�s
2

� �
a��2

��1. From Lemma 2 in Gómez and

Sharma (2006) it follows that for any e¤ort e > 0, @
@�EUb('b(e)j�; h

�)
��
�=�

FB
= 0:

@

@h
EUb('b(e)j�FB ; h)

����
h=h�

= �exp(�(1=2)(�=�) + (b=a)V (D; e))��
b

a
g(e; L�s; L

�
m)

b=a�1gh(e; L
�
s; L

�
m)f(e; L

�
s; L

�
m) + g(e; L

�
s; L

�
m)

b=afh(e; L
�
s; L

�
m)

�
:

From (A4) if follows that gh(e; L�s; L
�
m) = 0. Given (11), for � = �FB , fh(e; L

�
s; L

�
m) =

gh(e; L
�
s; L

�
m) = 0. Q.E.D.

Therefore, in the absence of moral hazard, the investor chooses the manager�s e¤ort level

that maximizes EUb('b(e)j�FB ; h�) = �exp
�
�(1=2)(�=�)2 + (b=a)V (D; e)

�
g(e; L�s; L

�
m)

a+b
a .

Under moral hazard, the third best e¤ort, eTB , is a function of � and h. The �rst order

condition for optimality requires that

@

@i
EUb('b(eTB )j�; h) =

@

@i
EUb('b(e)j�; h) +

@

@e
EUb('b(e)j�; h)

@

@i
eTB (�;h) = 0;

for i = f�; hg: Given Lemma 2, @
@iEUb('b(e)j�; h) = 0 at (�FB ; h

�). From Gómez and

Sharma (2006), @
@e EUb('b(e)j�FB ; h

�)je=e
TB
=

�exp(�(1=2)(�=�)+(b=a)V (D; e))g(eTB ; L�s; L�m)b=age(eTB ; L�s; L�m) > 0

and @
@�eTB (�; h

�) = �J�(eTB ; L�s; L�m) � J �1e (eTB ; L
�
s; L

�
m) > 0 for all � 2 (0; 1] and a < 1.

From Proposition 2, @
@h eTB (�FB ; h)jh=h� = 0. Hence, in general, the contract (�FB ; h

�) is

suboptimal.

22

IE WORKING PAPER                         DF8-125-I                         19/03/2007



From (A1) and (A2), Je(eTB ; L�s; L�m) > 0 and J�(eTB ; L�s; L�m) = Ve(D; e)�g�(eTB ; L�s; L�m)+

ge�(eTB ; L
�
s; L

�
m). Given (A7), lima!1 g(eTB ; L

�
s; L

�
m) =

�
1
1+e

�1=2
; from Corollary 1, lima!1 ge(eTB ; L

�
s; L

�
m) =

�
�

1
1+e

�3=2
, both independent of �. Therefore, lima!1 @

@�eTB (�; h
�) = 0 for all � 2 (0; 1]. In

the limit, the contract (�FB ; h
�) becomes (�rst-order) optimal. Q.E.D.
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Figure 1: We assume that short-selling is totally forbidden (s = 0) and there is no limit to margin
purchase (m!1). For simplicity, let � = 1. After putting e¤ort e the manager receives a signal
y and makes her optimal portfolio �. When h = 0 (bottom portfolio line), all signals y < ��

e
lead to short-selling. When h > 0 (upper portfolio line), the short-selling bound is hit for signals
y < ��

eLs: In both cases, the region of these non-implementable portfolios is marked by the
thick line. Under benchmarking (h > 0) there is an incremental area for implementable signals
relative to the case of no benchmarking. The size of this area, ha

e=�2
; increases with benchmarking

(h) and the manager�s risk aversion (a); it has probability mass equal to the shaded area in the
density function plot.
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Figure 2: The left column presents the public information case. For each contract (�; h) the
investor solves for the manager�s e¤ort level that maximizes (12). Notice that, for al values of a,
the optimal contract (highest expected utility) is, as predicted by Proposition 4, (�FB; h�), right
at the center of the grid. Obviously, by de�nition, holding b = 10 constant, �FB (h�)decreases
(increases) with a
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Figure 3: The right column presents the third best scenario. For each contract (�; h) the
manager chooses her optimal third best e¤ort in (10). For all values of a the optimal contract
under moral hazard is located North-East relative to the optimal, public information benchmark
(left column). In concrete we observe that the optimal � > �FB and the optimal benchmark
h � h�. This con�rms the prediction in Proposition 4: under moral hazard, the contract
(�FB; h

�) is suboptimal. Notice that as a increases, the third best contract converges to the
public information optimal contract (�FB; h�), just as predicted by Proposition 4.
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Figure 4: Induced third best e¤ort under portfolio constraints for three values of the manager�s
risk aversion: a = f10; 40; 100g. The optimal contracts (�; h) are shown in Figures 2 and 3. The
manager�s risk aversion is b = 10. The e¤ort disutility parameter is D = 1. The second best
e¤ort eSB = 0:366 is also reported for comparison purposes.
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