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Abstract

We show how to test hypotheses for coefficient alpha in three different
situations: 1. Hypothesis tests of whether coefficient alpha equals a
prespecified value. 2. Hypothesis tests involving two statistically
independent sample alphas as may arise when testing the equality of
coefficient alpha across groups. 3. Hypothesis tests involving two
statistically dependent sample alphas as may arise when testing the
equality of alpha across time, or when testing the equality of alpha for
two test scores within the same sample. We illustrate how these
hypotheses may be tested in a structural equation modeling framework
under the assumption of normally distributed responses and also under
asymptotically distribution free (ADF) assumptions. The formulas for
the hypothesis tests and computer code are given for four different
applied examples.
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1. Introduction

Assessing the reliability of a questionnaire or test score is one of the most frequent
tasks in psychological research. Often, researchers wish to go beyond providing a point
estimate of the reliability of their test score and are interested in testing hypotheses
concerning the reliability of their test score. A typical situation is when a researcher wishes
to determine whether the reliability of her test score is larger than some predetermined cut-
off value (say .80). Another commonly encountered situation is when a researcher wishes to
determine whether the reliability of her test score is equal across two or more populations.
For instance, a researcher may wish to determine whether the reliability of a test score is
equal across genders. Or, she may wish to determine whether the reliability of a test score is
the same across several countries. Finally, sometimes researchers are interested in
determining whether, within a population, the reliabilities of two test scores are equal. For
instance, the researcher may wish to test whether the reliability of a test score based on p
items equals the reliability of a test score based on a subset of those p items (as when a full
form and a short form of a questionnaire are available). A special case of this instance is
when a researcher wishes to test whether the reliability changes when a single item is
removed from the scale. As another example, a researcher may wish to test whether the
scores based on two subsets of items drawn from the same item domain are equally reliable.

Most often, reliability assessment is performed by means of coefficient alpha (Hogan,
Benjamin & Brezinski, 2000). Consequently, in this paper we focus on performing hypothesis
tests on the reliability of a test score based on coefficient alpha. Coefficient alpha (a) was
first proposed by Guttman (1945) with important contributions by Cronbach (1951). For
some recent discussions on «, see Cortina (1993), Miller (1995), Schmitt (1996), Shevlin,
Miles, Davies & Walker (2000), and ten Berge (2000). Coefficient alpha is a population
parameter and thus an unknown quantity. In applications, it is typically estimated using the
sample coefficient alpha, a point estimator of the population coefficient alpha. As with any
point estimator, sample coefficient alpha is subject to variability around the true parameter,
particularly in small samples. Methods for performing hypothesis testing based on coefficient
alpha rely on the estimation of the variability of sample coefficient alpha (i.e., its standard
error). The initial proposals for estimating the standard error of coefficient alpha were based
on model as well as distributional assumptions (see Duhachek and Iacobucci, 2004 for an
overview). Thus, if a particular model held for the covariance matrix among the test items,
and the test items followed a particular distribution, then a confidence interval for coefficient

alpha could be obtained. The sampling distribution for coefficient alpha was first derived
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(independently) by Kristof (1963) and Feldt (1965) who assumed that the test items were
strictly parallel (see Lord & Novick, 1968) and normally distributed. This model implies that
all the item variances are equal and all item covariances are equal. However, Barchard and
Haskstian (1997) found that standard errors for coefficient alpha obtained using these results
were not sufficiently accurate when model assumptions were violated (i.e. the items were not
strictly parallel). The lack of robustness of the standard errors for coefficient alpha to
violations of model assumptions have hindered the widespread use of hypotheses tests for
alpha in applications.

A major breakthrough occurred when van Zyl, Neudecker, and Nel (2000) derived the
asymptotic (i.e. large sample) distribution of sample coefficient alpha without model
assumptions '. In particular, these authors assumed only that the items composing the test
were normally distributed. Duhachek and Iacobucci (2004) recently compared the
performance of these model-free standard errors for coefficient alpha vs. those of model-based
procedures proposed by Feldt (1965) and Hakstian and Whalen (1976) under violations of
the model assumptions underlying coefficient alpha. They found that the model-free, normal
theory (NT) interval estimator proposed by van Zyl et al. (2000) uniformly outperformed
competing procedures across all conditions.

However, the results of van Zyl et al. (2000) assume that the items composing the
test can be well approximated by a normal distribution. In practice, tests are most often
composed of binary or Likert-type items for which the normal distribution can be a poor
approximation. Yuan, Guarnaccia, and Hayslip (2003) have proposed a model-free and
asymptotically distribution free (ADF) standard error for sample coefficient alpha that
overcomes this limitation. Maydeu-Olivares, Coffman and Hartmann (2007) have shown that
for sample sizes over 100 observations, ADF standard errors are preferable to NT standard
errors because the latter are not sufficiently accurate when the skewness or excess kurtosis of
the items is larger than one.

The purpose of the current study is to show how reliability hypotheses based on
coefficient alpha can be tested using the NT results of van Zyl et al. (2000), and also using
the ADF results of Yuan et al. (2003). In particular, we show how to perform hypothesis
testing in three cases. Case 1 involves a single sample alpha. Case 2 involves two statistically
independent sample alphas. Case 3 involves two statistically dependent sample alphas. Case
2 arises when comparing the population alpha across two independent samples, such as males
and females, or across countries. Case 3 arises when comparing the population alpha for two
sets of items in a single sample. Typical examples are testing the equality of population

alpha when an item is dropped, testing the equality of alpha for a full scale score and a
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reduced scale score, or testing the equality of alpha for the same score measured at two time
points. We do so by adopting a structural equations modeling (SEM) framework. A SEM
framework is not needed for testing Case 1 and 2 hypotheses. Indeed, the formulae involved
are straightforward. All that is needed are the standard errors of sample alpha which can be
computed using the code provided by Duhachek and Iacobucci (2004) and Maydeu-Olivares
et al. (2007). However, adopting a SEM framework for Cases 1 and 2 is convenient because
it provides a link to Case 3 hypothesis testing, which can not be easily performed without
using a SEM framework. Also, by adopting a SEM framework we can integrate the results of
van Zyl et al. (2000) and Yuan et al. (2003) with the large literature on reliability
assessment using SEM.

The three cases considered are illustrated using four examples. The test statistics
discussed in this paper are based on large sample theory and may not be accurate in small
samples. Since it is questionable to present results using arbitrary parameter values and
draw generalizable conclusions from them, we show how a Monte-Carlo investigation can be
performed using the simulation capabilities of SEM packages to determine the accuracy of

the obtained p-values and we do so for each of the examples presented.

2. Coefficient alpha

Consider a test or questionnaire composed of p items Y}, ..., Y, intended to measure
a single attribute. The reliability of the test score, X =Y, +---+7Y,, is defined as the
percentage of variance of X that is due to the attribute of which the items are indicators.
The most widely used procedure to assess the reliability of X is coefficient alpha (Guttman,

1945; Cronbach, 1951). In the population of respondents, coefficient alpha is
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the sum of the distinct item covariances. In applications, a sample of N

respondents from the population is available, and a point estimator of the population o given

in Equation (1) can be obtained using the sample coefficient alpha
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where s; denotes the sample covariance between items ¢ and j, and s; denotes the sample

variance of item 7.

2.1 Coefficient alpha and the reliability of a test score

A necessary and sufficient condition for coefficient alpha to equal the reliability of the
test score is that the items are true-score equivalent (i.e. essentially tau-equivalent items) in
the population (Lord & Novick, 1968: p. 50; McDonald, 1999: Chapter 6). A true-score
equivalent model is a one factor model in which the factor loadings are equal for all items.
The model implies that the population covariances are all equal, but the population
variances need not be equal for all items. Coefficient alpha also equals the reliability of the
test score when the items are parallel and strictly parallel, as these are special cases of the
true-score equivalent model .

When the items do not conform to a true score equivalent model, coefficient alpha
does not equal the reliability of the test score. For instance, if the items conform to a one
factor model with distinct factor loadings (i.e. congeneric items) then the reliability of the
test score is given by coefficient omega (see McDonald, 1999). Under a congeneric
measurement model, coefficient alpha underestimates the true reliability. However, the
difference between coefficient alpha and coefficient omega are generally in the third decimal
except in the rare cases where one of the factor loadings is very large (e.g. .9) and all the

other factor loadings are very small (e.g. .2) (Raykov, 1997).

2.2 The large sample distribution of sample alpha

Equation (2) shows that & is a function of the sample variances and covariances.
These variances and covariances are normally distributed in large samples, not only when
the item responses are normally distributed, but also under the ADF assumptions set forth
by Browne (1982, 1984) ®. As a result, and without any model assumptions, in large samples,
& is normally distributed with mean o and variance ¢”. The standard error of sample
alpha, ¢, can be estimated using the delta method (e.g., Agresti, 2002) from the large
sample covariance matrix of the sample variances and covariances. This matrix is different
under NT and ADF assumptions. As a result, when the normality assumption for the items

is replaced by the milder ADF assumption, the standard error for & will differ and we will
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use @y and @, to distinguish them. However, the point estimate of sample coefficient
alpha, &, remains unchanged when NT or ADF assumptions are invoked.

The accuracy of statistical inferences for « rests on the accuracy of the standard
errors for & . Both the NT and ADF model-free standard errors for & proposed by van Zyl et
al. (2000) and Yuan et al. (2003), respectively, are based on large sample theory.
Fortunately, Duhacheck and Iacobucci (2004) showed that the NT standard errors can be
well estimated with sample sizes as small as 30 provided the item responses are
approximately normally distributed. Also, sample sizes as small as 100 observations (and in
some cases 50 observations) suffice to adequately estimate ADF standard errors (Maydeu-
Olivares et al., 2007).

3. Hypothesis testing for coefficient alpha

In this section, we describe the statistical theory underlying hypothesis testing for «
based on the results of van Zyl et al. (2000) and Yuan et al. (2003).

Case 1: Hypothesis testing involving a single &
Consider testing whether o equals some a priori value, «; (e.g. .8 or .7). The null and
alternative hypotheses are H;:oy, <0 and H, :oy >0, where o, = o —q,. Since in

large samples & is normally distributed, a suitable test statistic is

p=Sar 07 (3)

where @ is the standard error for &, , and @ is either the NT standard error, ¢, , or the
ADF standard error, ¢,,,., depending on the distributional assumptions made. Then, the
observed significance level (p-value) for the test is the area under the standard normal curve

to the left of the observed z value.

Case 2: Hypothesis testing involving two statistically independent & 's

This case arises when a researcher is interested in comparing o in two populations
(e.g., males vs. females), or in two disjoint samples from the same population. For testing
the equality of alpha across two populations, the null and alternative hypotheses are
H :ayu =0 and H, oy =0, where oy =o, —a,, and o, and o, are the alpha
coefficients for a test score in populations 1 and 2, respectively. An appropriate test statistic

18
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where ¢, and ¢, are the (NT or ADF) standard errors for the estimates &, and &,. For this

two-tailed alternative, the p-value of the test is obtained as twice the area under the

standard normal curve to the left of |2].

Case 3: Hypothesis testing involving two statistically dependent & 's

Armed with the code for NT standard errors provided by Duhacheck and Iacobucci
(2004), and with the code for ADF standard errors provided by Maydeu-Olivares et al.
(2007), Case 1 and 2 hypothesis testing can be readily performed. In particular, for testing
the equality of alpha across two populations we used the fact that the variance of the
difference between &, and &, equals the sum of the variances of each sample alpha.
However, a researcher may be interested in testing whether the alpha coefficients for two test
scores obtained from the same sample are equal. In this case, the null and alternative
hypotheses are, as in Case 2, H,:«a, =0 and H, :ay =0, where oy = o, —a,, and
o, and «, are the alpha coefficients for two different test scores in the same population. An

appropriate test statistic is

~ ~

_ Qg Oy — Oy

= (5)
Gue  JO + 32 +2cov (&)

where ¢, and ¢, are the (NT or ADF) standard errors of &, and &,. The p-values are
obtained as in Case 2. Notice however that in this case the variance for the difference
between &, and &, also depends on the covariance between the two sample alphas because
they are obtained from the same sample. There are a variety of situations where Case 3
hypotheses testing can arise. These situations are easily handled by adopting a SEM
framework. The simpler Cases 1 and 2 can also be tested using a SEM framework that

directly yields the z test statistics.

4. Hypothesis testing for coefficient alpha using a SEM framework

In this section, we describe how to test hypotheses concerning « using SEM and the
model free approach of van Zyl et al. (2000) and Yuan et al. (2003). All that is needed is a
SEM package that has capabilities for defining additional parameters that are functions of

the parameters of the model. In this paper we used Mplus version 4 (Muthén & Muthén,
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2006). We provide the annotated Mplus input files as supplementary material that can be
downloaded from <psychological methods website>. The files are easy for applied
researchers to use. We also provide the data used in the examples as supplementary

material so that the examples below can be reproduced.

Case 1: Hypothesis testing involving a single &

Within a SEM framework, a model-free standard error for coefficient o can be obtained
as follows:

1) Specify the model to be a p X p symmetric matrix.

2) Following Equation (1), define three additional parameters: ~, = Z% , Yy = Zcij ,
i i<j
p . AF
p=10 42,

3) Define oy = a — .

and o =

The z statistic given by Equation (3) appears in the computer output as the ratio of the
estimated o, divided by its standard error. The p-value for the statistic can be readily
obtained from a table of standard normal probabilities.

Notice that since a fully saturated model is used in step 1) there are zero degrees of
freedom and the model fits perfectly. Also, the additional parameters in step 2) do not
introduce additional constraints on the model.

Different estimation methods can be used to estimate the parameters. Some popular
choices are generalized least squares (GLS) estimation, maximum likelihood (ML)
estimation, or weighted least squares (WLS) estimation. GLS and ML estimation can be
performed under normality assumptions or with standard errors that are robust to normality
(e.g. ADF) assumptions. WLS estimation assumes ADF assumptions. Because a saturated
model is being fitted, all estimators (GLS, ML or WLS) lead to the same point estimate for
coefficient alpha, as given in Equation (2). Also, when estimating the model under normality
assumptions, GLS and ML lead to the same standard error for &, as given by van Zyl et al.
(2000). Similarly, when estimating the model without normality assumptions, robust GLS,
robust ML and WLS lead to the same standard error for &, as given by Yuan et al. (2003).
Mplus 4 implements NT GLS estimation, NT ML estimation, robust ML estimation, and
WLS estimation ‘. Also, Mplus yields as optional output confidence intervals for any

parameter in the model (including additional parameters, such as o« or o ).
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Case 2: Hypothesis testing involving two statistically independent & 's
For two populations, we need to extend the previous SEM setup to two populations
as follows:
1) For each population, specify the model to be a p X p symmetric matrix.
2) Define three additional parameters as above for each population. Thus, for the first
population define ~,;,~,,, and «,. For the second population define ~,,,~,,, and o, .
3) Define o = o) — .
Again, the model fits perfectly, and the z statistic given by Equation (4) appears in the
Mplus output as the ratio of the estimated o, divided by its standard error. Then, the p-
value for the statistic can be readily obtained from a table of standard normal probabilities.

Also, a confidence interval for oy may be requested.

Case 3: Hypothesis testing involving two statistically dependent & 's
Consider two test scores computed on the same sample of respondents. This may
occur when the two test scores being compared are alternate forms of the same test (possibly
with no items in common), or when the two test scores correspond to a pre-test and post-test
administration of the same test. The first test score is based on p, items, and the second is
based on p, items. Some items may appear on both test scores, so that the overall number of
items is p < p, + p,. When no item appears on both test scores, the overall number of items
is p=p, +p,. On the other hand, p < p, + p, when one or more items appears on both
test scores. This may occur when one test score corresponds to the full form of a test and the
other test score corresponds to a reduced form of the test.
The procedure involved for testing a hypothesis involving the difference between the
«’s is very similar to the previous ones:
1) Specify the model to be a p x p symmetric matrix.
2) Define three additional parameters for each test score: ~,,,7,,, and o, for the first
test score, and ~,,,",,, and «a, for the second test score.
3) Define oy = o — .
Again, we do not impose any constraints among the p items. The model fits perfectly.
The z statistic given by Equation (5) appears in the Mplus output as the ratio of the
estimated o, divided by its standard error. The p value for the test statistic can be
obtained from a table of standard normal probabilities.
In the next section we provide numerical examples to illustrate hypothesis testing for

a under both normality assumptions and the less stringent ADF assumptions. As an
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example of Case 1, we test whether the population coefficient o of a scale score equals .9. As
an example of Case 2, we test whether the population coefficient «'s across genders are equal.
We provide two examples of Case 3. In the first example we test whether the population « of
the scale score equals the scale score when only half the items are used. These scale scores
correspond to the full and short forms of a questionnaire. In the second example we test
whether the population o of a scale score changes when the questionnaire is administered to

the same respondents at two time points.

5. A numerical example: Testing reliability hypotheses based on

coefficient alpha for the NPO scale scores

The Negative Problem Orientation (NPO) scale is one of the five scales of the Social
Problem Solving Inventory (SPSI-R: D'Zurilla, Nezu & Maydeu-Olivares, 2002). Two forms
of this inventory are available, the full form and the short form. In its full form, the NPO
scale consists of 10 items. Each item is to be answered using a 5-point response scale. The
short scale consists of a subset of five items. Here, we shall use two random samples, 100
male and 100 female respondents, from the normative US sample. The correlations and
standard deviations among the 10 NPO items in these samples are provided in Table 1 °.

The first five items shown in Table 1 correspond to the items composing the short form.

Insert Table 1 about here

Example 1: Testing the hypothesis that o = .9 for the full NPO scale in the female
population (case 1)

Using ML and assuming the items are approximately normally distributed,& = .88
and ¢, = .02. The zstatistic of Equation (3) is z = -1.08, yielding a p-value of 0.14. Thus,
we can not reject the hypothesis that o equals .9 in the female population. Because in this
sample the NPO items do not markedly depart from a normal distribution we obtain almost
identical results when using the milder ADF assumptions. In that case, the zstatistic is -1.04
and p = 0.14. Mplus also yields (upon request) confidence intervals for a. A 95% confidence
interval under normality assumptions is (.85; .92) and the ADF interval is the same (to two

significant digits).
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Example 2: Testing the hypothesis that the population o for the full NPO scale is equal
across genders (case 2).

For the male sample, under normality assumptions, &= .84 and ¢,, = .02. The
Mplus output yields an estimated o difference (males — females) of -.045 with a standard
error of .03 under normality assumptions. The zstatistic from Equation (4) is -1.52, yielding
a p-value of .13. We can not reject the hypothesis that population « is equal across genders.
In the male sample, the NPO items do not markedly depart from a normal distribution
either. As a result, when we replace the NT assumptions by ADF assumptions, a similar

result is obtained; z = -1.48 and p = .14.

Example 3: Testing the equality of o between the full and short forms of the NPO scale in
the male population (case 3)

For the short form in the male sample, & = .72 and ¢,, = .04. Also, the estimated «
difference (full — short ) is .12 with a standard error of .03. The z statistic from Equation (5)
is 4.21 and p < .01. We reject the hypothesis of equality of a for the full and short NPO
scale scores in the male population. Again, similar results are obtained under ADF
assumptions; z = 3.60 and p < .01.

As a final example, we provide another example of Case 3. This example involves
testing the hypothesis of equality of o for two repeated administrations of the short forms of
the NPO scale. The two administrations are 3 weeks apart. The sample includes both male
and female respondents (N = 138). Table 2 provides the correlations and standard deviations
among the five items at each administration. The first five items shown in Table 2
correspond to the first administration and the last five items correspond to the second

administration.

Insert Table 2 about here

Example 4: Testing the equality of ov in two repeated administrations of the short form of
the NPO scale (case 3)

Under ADF assumptions a 95% confidence interval for o for the first administration
is (.69; .82), whereas a 95% confidence interval for the second administration is (.79; .89).
Given these intervals, it is difficult to determine whether coefficient alpha is equal across

administrations. In contrast, the z statistic from Equation (5) is -3.06, p < .01. We clearly

10



IE WORKING PAPER WP 4/08 10/01/2008

reject the hypothesis of invariance of o across administrations. A higher o was obtained for
the second administration. For these data, a similar result is obtained under normality

assumptions, z = -2.98, p < .01.

5.1 Accuracy of the p-values

As we have pointed out, the accuracy of the tests statistics rely on the accuracy of
the standard errors. Duhachek and Iacobucci (2004) and Maydeu-Olivares et al. (2007)
investigated the accuracy of the NT and ADF standard errors in a variety of situations and
reported that they are accurate with sample sizes of 100 (and in some cases even fewer
observations). However, when applying these test statistics, the applied researcher may be in
doubt as to whether the conditions confronted in her study match those investigated in
previous studies. In other words, the p-values obtained may be in doubt.

To verify the accuracy of the p-values for a particular study, a simulation study can
be performed using the estimated parameters of the model as the true parameter values.
Using the capabilities of Mplus for Monte-Carlo simulation, we investigated the accuracy of
the p-values in each of our four examples using the actual sample size from each of the

studies as the sample size in our simulations °

. Because in our examples the items were
approximately normally distributed, multivariate normal data was generated in each case
using the estimated mean and covariance matrix from each example as the true mean and
covariance matrix. In each case, 1000 random samples were drawn. Table 3 provides the
empirical rejection rates for each of the examples. As can be seen in this table, given the
small sample sizes considered, the p-values obtained are reliable. Also notice that the p-
values for example 2 are somewhat more accurate than those for the remaining three
examples. This may be related to the sample sizes involved. In example 2 the sample size is
larger (100 males and 100 females) than in the other examples (100 females in example 1,

138 individuals in example 3, and 100 males in example 4).

Insert Table 3 about here

6. Discussion

Two strategies exist for drawing statistical inferences about the reliability of a test
score. One strategy involves using coefficient alpha. Another strategy is to use a model-based
reliability coefficient.

The model-based approach begins by fitting a measurement model to the items

11
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composing the test. When a model can not be rejected at the usual significance level, then a
reliability coefficient based on the fitted model can be employed. For instance, suppose
interest lies in performing hypothesis testing on a single reliability coefficient (as in Case 1).
If a one factor model fits the items, then statistical inferences about the reliability of the test
score can be performed using coefficient omega because this coefficient equals the reliability
of the test. There is an extensive literature on using structural equation modeling to perform
statistical inferences using model-based reliability estimates for a variety of measurement
models (see for instance Kano & Azuma, 2003; Raykov, 2004; and Raykov & Shrout, 2002).
However, implementing the model-based approach may prove difficult in applications. Often,
all measurement models under consideration will be rejected. In this case, model-based
reliability inferences can be based on the best fitting model found, which will fit the data
only approximately. However, because the model does not fit the data exactly, the model-
based reliability estimate will be biased and the direction and magnitude of the bias will be
unknown. Also, in those cases where a model can be found that is not rejected by the exact
goodness of fit test, the measurement model may be too complex for applied researchers to
compute the appropriate reliability estimate. Finally, implementing a model-based approach
becomes more difficult when interest lies in drawing reliability inferences across different
populations or for test-retest situations (the Cases 2 and 3 discussed above) because different
measurement models may be needed across populations or time points.

The alternative strategy, drawing inferences using population coefficient alpha, is
easy to implement because it is model-free. However, researchers using this strategy should
bear in mind that they are performing statistical inferences on population alpha and not on
population reliability. In general, these are two different population parameters that are only
equal when a tau-equivalent model fits the items. To claim inferences about population
reliability using coefficient alpha, researchers need to test the adequacy of the tau-equivalent
model. Further, coefficient alpha is not always a lower bound to population reliability.
Coefficient alpha is a lower bound to the reliability of a test score whenever the item scores

have the decomposition

where the Ts and E/s are uncorrelated, and the E/s are uncorrelated with each other (e.g.,
Novick & Lewis, 1967; Bentler, 2007). This condition is quite general. For instance, if a -
factor model fits the data, Equation (6) is satisfied, and coefficient alpha is a lower bound to

the reliability of the test score. To see this, consider the k-factor model Y, = u, +An+¢,,

12
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where 1, A/

T

and ¢; denote the mean, the 1 x k vector of factor loadings, and the unique
factor for the ith item, respectively, and 7 denotes the k x 1 vector of factors. Letting
p,+Am =T and ¢ = E,, the kfactor model is a special case of Equation (6). Thus, in
many instances, such as when a k-factor model fits the data, coefficient alpha is a lower
bound to population reliability. Nevertheless, it may be best to simply claim inferences about
population alpha rather than population reliability. Claiming lower bound properties for
coefficient alpha without fitting a measurement model should be avoided because when
Equation (6) is not satisfied, such as when some of the errors, E, are correlated, population
alpha may be larger than population reliability (see Komarov, 1997; Raykov, 2001; Green &
Hershberger, 2000) .

7. Conclusion

In this paper we have shown that drawing statistical inferences for population alpha
is quite straightforward. Statistical inferences for coefficient alpha are model-free and do not
require assuming that the items composing the test score are normally distributed. Because
of this computational ease, researchers interested in drawing statistical inferences for
population reliability may want to consider drawing inferences for population alpha instead.
We do believe that researchers should attempt to draw inferences for population reliability
whenever possible. However, this requires that a good fitting measurement model can be
found and the model-based reliability estimate is easy to compute. If a good fitting model
can be found but the model-based reliability estimate is cumbersome to compute, researchers
may consider drawing inferences for coefficient alpha instead. If the fitted model satisfies the
conditions for coefficient alpha to be a lower bound to reliability, then drawing inferences for
coefficient alpha becomes an attractive option to drawing inferences for population reliability
from a computational viewpoint. When no good fitting measurement model can be found,
researchers may still draw inferences for coefficient alpha, as this is a meaningful parameter
per se. However, in this case, researchers drawing inferences about coefficient alpha should
carefully avoid extrapolating their conclusions to population reliability or claiming that
coefficient alpha is a lower bound of population reliability. These claims need be supported
by model fitting. Finally, researchers drawing inferences about coefficient alpha should avoid
claiming support for the unidimensionality of the items comprising the scale score. As has
been shown, the computation of alpha is model-free, and in particular, it does not assume

unidimensionality (see e.g. Cortina, 1993).

13
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Footnotes

' Only a positive definite covariance matrix is assumed. All previous derivations, which
assumed particular models (e.g. tau equivalence) for the covariance matrix, can be treated as
special cases of their result.

? In the parallel items model, in addition to the assumptions of the true-score equivalent
model, the unique variances of the error terms in the factor model are assumed to be equal
for all items. A more constrained version of the parallel items model is the strictly parallel
items model, where additionally the item means are assumed to be equal across items.

* ADF estimation replaces the normality assumption by the milder assumption that eighth
order moments of the distribution of the data are finite. This assumption is satisfied in the
case of Likert-type items, where the distribution of each item is multinomial. The
assumption ensures that the fourth order sample moments are consistent estimators of their
population counterparts (Browne, 1984).

* In Mplus 4, GLS and ML denote GLS and ML estimation, respectively, under normality
assumptions. ML estimation with robust standard errors is performed by using MLM or
MLMV. MLM and MLMYV yield the same parameter estimates and standard errors, and
differ only in the goodness of fit statistics provided. For the models considered here, MLM
and MLMYV yield the same fit, a perfect fit, because the models are saturated.

? The correlations and standard deviations provided suffice for NT hypotheses testing
involving coefficient o.. For ADF hypotheses testing, the raw data is needed. The raw data is
provided as supplementary materials.

 Mplus saves the estimated parameters to an external file. These parameters are then read
by an additional Mplus input file to perform the simulation. The Mplus files used in the
simulation are available from the authors upon request.

" In our experience, however, the situations where alpha can be larger than reliability are

rather rare.
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Table 1

Correlations and standard deviations among the items of the NPO

Males (N = 100)
il i2 i3 i4 i5 i6 i7 i8 i9 i10

il 1.00

i2 32 1.00

i3 .23 24 1.00

i4 .28 .29 31 1.00

i5 41 .44 .22 28 1.00

i6 .44 .35 AT .38 39 1.00

i7 21 .48 37 .25 .33 A7 1.00

i8 .29 .32 .50 .26 .33 .32 28  1.00

i9 .24 .35 .29 .29 .35 37 .46 33 1.00

i10 .20 .23 .46 .26 .25 AT .50 .28 b5 1.00
SD 1.09 115 1.19 1.02 97 119 1.02 136 1.19 1.08

Females (N = 100)
il i2 i3 i4 i5 i6 i7 i8 i9 i10

il 1.00

i2 39 1.00

i3 .39 42 1.00

i4 37 .39 46 1.00

i5 37 .46 18 43 1.00

i6 .26 41 37 .51 45 1.00

i7 43 .54 AT .62 .50 50 1.00

i8 .20 .24 .25 41 .33 .29 50 1.00

i9 .29 42 .40 42 37 42 .65 42 1.00

i10 .46 .50 .60 .55 .38 .39 .64 44 .63 1.00
SD .13 114 119 130 117 121 123 120 1.34 1.31
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Table 2

WP 4/08

10/01/2008

Correlations and standard deviations among the items of the short scale of the NPO

measured at two time points (N = 138). Items measured at time 1 are denoted as il to i5 and

items measured at time 2 are denoted as r1 to rd.

il i2 i3 i4 i5 rl r2 r3 rd rH
il 1.00
i2 53 1.00
i3 41 33 1.00
i4 37 37 35 1.00
i5 A7 31 42 .24 1.00
rl .b2 .39 .35 34 451 1.00
r2 .45 .58 37 .36 45 .57 1.00
r3 .45 41 .69 .35 .59 .51 .51 1.00
r4d .34 .35 .28 .49 .34 45 .36 .50 1.00
rd 48 48 37 .36 .64 .61 .59 .56 44 1.00
SD 1.16 1.16 122 1.10 1.25¢ 1.12 1.19 1.20 1.02 1.29
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Table 3

WP 4/08

10/01/2008

Empirical rejection rates of the test statistic at the exact settings for each of our examples.

In each case, 1000 replications were generated using the actual example's sample size.

Sample Empirical rejection rates
Example  size 1% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%
1 100 23 73 11.6 199 294 39.0 481 60.2 71.1 81.31 90.7
2 200 1.5 54 105 20.8 30.4 393 50.2 60.2 69.6 79.9 90.5
3 00 01 31 77 198 30.3 40.0 488 57.8 67.0 76.0 86.7
4 138 22 6.8 121 21.5 30.0 39.1 49.8 61.2 72.1 831 925
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DATA: FILE IS

WP 4/08 10/01/2008

Mplus input file to illustrate how to compute coefficient

alpha and its confidence interval without normality assumptions
The program reads the file npo.dat containing

200 observations on the items of the NPO scale collected using
5 response alternatives

There are 100 respondents from each gender

tle: Testing alpha = .9 for females, NPO full scale;

'npo.dat"';

The following lines provide names for the variables

VARIABLE: NAMES ARE 11-i10 gender;

ANALYSTIS:

only responses from male respondents are used
USEOBSERVATIONS ARE (gender EQ 2);
USEVARIABLES ARE 11-110;
For an ADF CI for coefficient alpha use MLM estimation
For a NT CI for coefficient alpha use ML estimation
ESTIMATOR=ML;

MODEL:

All the covariances among the items are free to be estimated
Values in parenthesis assign names to the estimated parameters
il WITH i2-110* (covl2-cov20);
i2 WITH i3-110* (cov23-cov30)
i3 WITH i4-110* (cov34-cov40)
i4 WITH i5-110* (cov45-cov50);
i5 WITH 16-110* (cov56-cov60) ;
)
)
)

r
14

14

i6 WITH i7-i110* (cov67-cov70
17 WITH i1i8-110* (cov78-cov80
i8 WITH 1i9-i110* (cov89-cov90
19 WITH 1i10* (cov910);

All the items' variances are free to be estimated
11-110* (varl-varlO);

o~ o~ o~~~ —~

r

r

MODEL CONSTRAINT:

Declares new variables which are functions of
previous variables

NEW (sumvars sumcovs summat alpha alphadif);
Defines sumvars as the sum of the items' variances

sumvars varl + var2 + var3 + vard + varb5

+ var6 + var7 + var8 + wvar9 + varl0;

! Defines sumcovs as the sum of the items' covariances
sumcovs =
covl2 + covl3 + covld + covl5 + covle + covl7 + covl8 + covl9 + cov20
+ cov23 + cov24 + cov25 + cov26 + cov27 + cov28 + cov29 + cov30
+ cov34 + cov35 + cov36 + cov37 + cov38 + cov39 + covi40
+ covd5 + covdo + covd7 + covd8 + covd9 + cov50
+ cov56 + cov57 + cov58 + cov59 + cov6el
+ covoe7 + cove8 + cove9 + cov70
+ cov78 + cov79 + cov80
+ cov89 + cov90
+ cov910;
! Defines summat as the sum of the variances and covariances
summat = sumvars + 2 * sumcovs;
! Defines alpha
! 10/9 is number of items/ (number of items-1)
alpha = (10/9) * (1 - sumvars/summat);
alphadif = alpha - .9;
! use CINT to obtain confidence intervals
OUTPUT: CINT;
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Mplus input file to illustrate how to test the equality of
coefficient alpha between two populations

without normality assumptions

The program reads the file npo.dat containing

200 observations on the items of the NPO scale collected using
5 response alternatives

There are 100 respondents from each gender

The equality of coefficient alpha between males and females is
tested

Title: Testing equality of alpha across gender, NPO full scale;

DATA: FILE IS

'npo.dat’';
The following lines provide names for the variables

VARIABLE:

ANALYSIS:

NAMES ARE 1i1-i10 gender;

GROUPING IS gender (l=males 2=females);

USEVARIABLES ARE i11-110;
For a ADF CI for coefficient alpha use MLM estimation
For a NT CI for coefficient alpha use ML estimation
ESTIMATOR=ML;

MODEL males:

All the covariances among the items are free to be estimated
Values in parenthesis assign names to the estimated parameters

il
iz
i3
i4
i5
i6
i7
i8
i9

! A1l the items'

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

i2-i10* (covl 12-covl 20);
13-i10* (covl 23-covl 30
i4-i10%
i5-i10*
i6-i10*

)i
covl 34-covl 40);
covl 45-covl 50);
covl 56-covl 60);
)
)
)

1i7-110* (covl 67-covl 70);
i8-i10* (covl 78-covl 80
19-i10* (covl 89-covl 90
i10* (covl 910);

variances are free to be estimated

14

o~ o~~~ o~ —~

14

i1-i10*(varl 1-varl 10);
MODEL females:
! A1l the covariances among the items are free to be estimated
! Values in

il
iz
i3
i4
i5
i6
i7
i8

WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH
WITH

parenthesis assign names to the estimated parameters
i2-110* (cov2 12-cov2 20);

13-i10* (cov2_23-cov2_ 30
i4-i10%
i5-i10%

cov2 34-cov2_40);
cov2_45-cov2 50

14

i6-110%
i7-1i10*
i8-i10%

o~ o~~~ o~ —

cov2 _67-cov2 70
cov2_ 78-cov2 80

)
)
)
cov2 _56-covz_60);
)
)
19-i10* (cov2 _89-cov2_ 90)

r

Iz

Iz

i9 i10* (cov2_910);
! A1l the items' variances are free to be estimated
i1-i110*(var2 l-var2 10);
MODEL CONSTRAINT:
! Declares new variables which are functions of
! previous variables
! subscript 1 refers to males, and 2 to females
NEW (sumvarsl sumcovsl summatl alphal
sumvars2 sumcovs?2 summat?2 alpha?
alphadif);

! COMPUTATION OF ALPHA FOR MALES
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Defines sumvars as the sum of the items'
sumvarsl = varl 1 + varl 2 + varl 3 + varl 4 + varl 5
+ varl 6 + varl 7 + varl 8 + varl 9 + varl 10;

Defines sumcovs as the sum of the items'
sumcovsl
covl 12 +
covl 16 +

+

covl 23

covl 28 +

+

covl 34

covl 39 +

+ + + + o+

+

covl 45
covl 56
covl 67
covl 78
covl 89

covl 13 +
covl 17 +

+

covl 24

covl 29 +

+

covl 35

covl 40

+
+
+
+

+

covl 910;
Defines summat as the sum of the variances and covariances
sumvarsl + 2 * sumcovsl;

summatl =
Defines alpha
10/9 is number of items/ (number of items-1)
alphal =

COMPUTATION OF ALPHA FOR FEMALES

covl 46
covl 57
covl 68
covl 79
covl 90

covl 14 +
covl 18 +

+

covl 25

covl 30

+

+
+
+
+

covl 36

covl 47
covl 58
covl 69
covl 80

covl 15 +
covl 19 + covl 20
+ covl 27 +

+

+

+

covl 26
covl 37
covl 48

covl 70

Defines sumvars as the sum of the items'
sumvars?2
+ var2 6 + var2 7 + var2 8 + var2 9 + var2 10;

Defines sumcovs as the sum of the items'
sumcovs?2
cov2 12 +
cov2 16 +

+

cov2 23

cov2 28 +

+

cov2 34

covz 39 +

+ o+ o+ o+ o+

+

summat?2

cov2 45
cov2 56
cov2 67
cov2 78
cov2 89

cov2 13 +
covz 17 +

+

covz 24

cov2 29 +

+

cov2_ 35

covz 40

+
+
+
+

+

covz_ 910;
Defines summat as the sum of the variances and covariances
sumvars2 + 2 * sumcovs2;
Defines alpha
10/9 is number of items/ (number of items-1)

alphaz =

cov2 46
covz 57
cov2 68
covz 79
covz 90

cov2 14 +
cov2 18 +

+

cov2 25

covz_ 30

+

+
+
+
+

cov2 36

covz 47
cov2 58
cov2 69
covz_ 80

cov2 15 +
cov2 19 +

+

+

cov2 26
covz_ 37
cov2 48

cov2 59
covz 70

10/01/2008

variances

covariances

+ covl 38 +

+ covl 49 + covl 50
covl 59 + covl 60

(10/9) * (1 - sumvarsl/summatl);

variances

var2 1 + var2 2 + var2 3 + var2 4 + var2 5

covariances

covz 20

+

+

+ +

(10/9) * (1 - sumvars2/summat?);

Defines alphadif = difference between alpha
alphadif

use CINT to obtain confidence

and estimated alpha
OUTPUT: CINT;

alphal - alpha2;

23
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Mplus input file to illustrate how to test the equality of
coefficient alpha between two subsets of items computed
in the same sample

|
!
!
!
! The program reads the file npo.dat containing

! 200 observations on the items of the NPO scale collected using
! 5 response alternatives

! There are 100 respondents from each gender

!

|

|

!

!

!

|

The equality of coefficient alpha between the reduced scale and the
full scale is tested

The reduced scale is composed of items il to 15

The full scale is composed of items il to il0

Inputing a data file to Mplus where the items in the reduced scale are
together in the first columns of the file simplifies the programming

Title: Testing equality of alpha between the full and short form of NPO;
DATA: FILE IS 'npo.dat';

! The following lines provide names for the variables
VARIABLE:
NAMES ARE 1i1-i10 gender;
! only responses from male respondents are used
USEOBSERVATIONS ARE (gender EQ 1);
USEVARIABLES ARE i1-1i10;

! For an ADF CI for coefficient alpha use MLM estimation
! For a NT CI for coefficient alpha use ML estimation
ANALYSIS: ESTIMATOR=ML;

MODEL:
! A1l the covariances among the items are free to be estimated
! Values in parenthesis assign names to the estimated parameters
il WITH i2-110* (covl2-cov20);
i2 WITH i3-110* (cov23-cov30)
13 WITH 14-110* (cov34-cov40)
i4 WITH i15-110* (cov45-cov50);
i5 WITH 16-110* (cov56-cov60) ;
)
)
)

14

r

14

i6 WITH i7-i110* (cov67-cov70
i7 WITH i8-i10* (cov78-cov80
i8 WITH 1i9-i110* (cov89-cov90
19 WITH 1i10* (cov91l0) ;

o~ o~~~ o~ —~

14

r

! A1l the items' variances are free to be estimated
11-110* (varl-varlO);

MODEL CONSTRAINT:

! Declares new variables which are functions of

! previously defined parameters

! Variables with subscript 1 refer to the full scale (10 items)
! Variables with subscript 2 refer to the short scale (5 items)

NEW (sumvarsl sumcovsl summatl alphal

sumvars2 sumcovs?2 summat?2 alpha?
alphadif);
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! COMPUTATION OF ALPHA FOR THE FULL SCALE

! Defines sumvars as the sum of the items' wvariances
sumvarsl = varl + var2 + var3 + vard4d + varb
+ var6 + var7 + var8 + wvar9 + varl0;
! Defines sumcovs as the sum of the items' covariances
sumcovsl =
covl2 + covl3 + covld + covl5 + covle + covl7 + covl8 + covl9 + cov20

+ cov23 + cov24 + cov25 + cov26 + cov27 + cov28 + cov29 + cov30
+ cov34 + cov35 + cov36 + cov37 + cov38 + cov39 + covi40

+ cov4d5 + covd6 + covd7 + covd8 + covd9 + covhO0

+ cov56 + cov57 + cov58 + cov59 + cov60

+ covbe7 + cove8 + cove9 + cov70

+ cov78 + cov79 + cov80

+ cov89 + cov90

+ cov910;

! Defines summat as the sum of the variances and covariances
summatl = sumvarsl + 2 * sumcovsl;

! Defines alpha

! 10/9 is number of items/ (number of items-1)
alphal = (10/9) * (1 - sumvarsl/summatl);

! COMPUTATION OF ALPHA FOR THE SHORT SCALE

! Defines sumvars as the sum of the items' variances

sumvars?2 = varl + var2 + var3 + vard + varh;
! Defines sumcovs as the sum of the items' covariances
sumcovs2=

covl2 4+ covl3 + covld + covlb
+ cov23 + cov24 + cov25

+ cov34 + cov3b

+ cov4db5 ;

! Defines summat as the sum of the variances and covariances
summat?2 = sumvars?2 + 2 * sumcovs2;

! Defines alpha

! 5/4 is number of items/ (number of items-1) in the reduced scale
alpha2 = (5/4) * (1 - sumvars2/summat2) ;

! Define alphadif as the difference between alpha for the full scale
! and alpha for the short scale
alphadif = alphal - alpha2;

! use CINT to obtain confidence intervals for each estimated parameter

! and estimated alpha
!'OUTPUT: CINT;
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Mplus input file to illustrate how to test the equality of
the coefficient alpha for a test score measured at two time points
in the same sample

|

!

!

!

! The program reads the file retest npo.dat containing

! 138 observations on the items of the short NPO scale, measured twice.
! The scale consists of 5 items, each with 5 response alternatives

! The file contains 10 columns. The first 5 correspond to the items at time
! 1, and the last 5 correspond to the items at time 2.

Title: Test of the equality of alpha at two time points;

DATA: FILE IS 'npo retest.dat';

! The following lines provide names for the variables
VARIABLE:
NAMES ARE i1-110;

! For an ADF CI for coefficient alpha use MLM estimation
! For a NT CI for coefficient alpha use ML estimation
ANALYSIS: ESTIMATOR=ML;

MODEL:
! A1l the covariances among the items are free to be estimated
! Values in parenthesis assign names to the estimated parameters
il WITH i2-110* (covl2-cov20);
i2 WITH i3-110* (cov23-cov30)
13 WITH 14-110* (cov34-cov40)
i4 WITH i5-110* (cov45-cov50);
i5 WITH 16-110* (cov56-cov60) ;
)
)
)

r

r

14

i6 WITH i7-i110* (cov67-cov70
17 WITH i1i8-110* (cov78-cov80
i8 WITH 1i9-i110* (cov89-cov90
19 WITH 1i10* (cov910);

r

o~ o~ o~~~ —~

r

! A1l the items' variances are free to be estimated
11-110* (varl-varl0) ;

MODEL CONSTRAINT:

! Declares new variables which are functions of

! previously defined parameters

! Variables with subscript 1 refer to the scale at time 1 (5 items)
! Variables with subscript 2 refer to the scale at time 2 (5 items)

NEW (sumvarsl sumcovsl summatl alphal
sumvars2 sumcovs?2 summat?2 alpha?
alphadif);

! COMPUTATION OF ALPHA FOR THE TIME 1 SCALE

! Defines sumvars as the sum of the items' wvariances
sumvarsl = varl + var?2 + var3 + vard + varh;

! Defines sumcovs as the sum of the items' covariances
sumcovsl =
covl2 4+ covl3 + covld + covlb
+ cov23 + cov24 + cov2b
+ cov34 + cov3b
+ cov4b5;
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Defines summat as the sum of the variances and covariances
summatl = sumvarsl + 2 * sumcovsl;

Defines alpha

5/4 is number of items/ (number of items-1)
alphal = (5/4) * (1 - sumvarsl/summatl);

COMPUTATION OF ALPHA FOR THE TIME 2 SCALE

Defines sumvars as the sum of the items' variances

sumvars?2 = var6 + var7 + var8 + var9+ varlO;
Defines sumcovs as the sum of the items' covariances
sumcovs2=

cove7 + cove8 + cove9 + cov70
+ cov78 + cov79 + cov80
+ cov89 + cov90

+ cov910;
Defines summat as the sum of the variances and covariances
summat?2 = sumvars?2 + 2 * sumcovs2;

Defines alpha
5/4 is number of items/ (number of items-1)
alpha2 = (5/4) * (1 - sumvars2/summat2) ;

Define alphadif= difference between alpha at times 1 and 2
alphadif = alphal - alpha2;

10/01/2008

use CINT to obtain confidence intervals for each estimated alpha
OUTPUT: CINT;
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